Suppr超能文献

机器学习失控:利用圈养个体的数据推断野生动物行为。

Machine learning goes wild: Using data from captive individuals to infer wildlife behaviours.

机构信息

Department of Evolutionary Ecology, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.

Department of Ecological Dynamics, Leibniz Institute for Zoo and Wildlife Research, Berlin, Germany.

出版信息

PLoS One. 2020 May 5;15(5):e0227317. doi: 10.1371/journal.pone.0227317. eCollection 2020.

Abstract
  1. Remotely tracking distinct behaviours of animals using acceleration data and machine learning has been carried out successfully in several species in captive settings. In order to study the ecology of animals in natural habitats, such behaviour classification models need to be transferred to wild individuals. However, at present, the development of those models usually requires direct observation of the target animals. 2. The goal of this study was to infer the behaviour of wild, free-roaming animals from acceleration data by training behaviour classification models on captive individuals, without the necessity to observe their wild conspecifics. We further sought to develop methods to validate the credibility of the resulting behaviour extrapolations. 3. We trained two machine learning algorithms proposed by the literature, Random Forest (RF) and Support Vector Machine (SVM), on data from captive red foxes (Vulpes vulpes) and later applied them to data from wild foxes. We also tested a new advance for behaviour classification, by applying a moving window to an Artificial Neural Network (ANN). Finally, we investigated four strategies to validate our classification output. 4. While all three machine learning algorithms performed well under training conditions (Kappa values: RF (0.82), SVM (0.78), ANN (0.85)), the established methods, RF and SVM, failed in classifying distinct behaviours when transferred from captive to wild foxes. Behaviour classification with the ANN and a moving window, in contrast, inferred distinct behaviours and showed consistent results for most individuals. 5. Our approach is a substantial improvement over the methods previously proposed in the literature as it generated plausible results for wild fox behaviour. We were able to infer the behaviour of wild animals that have never been observed in the wild and to further illustrate the credibility of the output. This framework is not restricted to foxes but can be applied to infer the behaviour of many other species and thus empowers new advances in behavioural ecology.
摘要
  1. 使用加速度数据和机器学习远程跟踪动物的独特行为已在几种圈养物种中成功进行。为了研究动物在自然栖息地的生态,需要将这种行为分类模型转移到野生动物个体上。然而,目前,这些模型的开发通常需要直接观察目标动物。

  2. 本研究的目的是通过在圈养个体上训练行为分类模型,从加速度数据中推断野生动物的行为,而无需观察它们的野生同类。我们进一步寻求开发方法来验证由此产生的行为推断的可信度。

  3. 我们使用文献中提出的两种机器学习算法,随机森林 (RF) 和支持向量机 (SVM),对圈养红狐 (Vulpes vulpes) 的数据进行训练,然后将其应用于野生狐狸的数据。我们还测试了一种新的行为分类方法,即对人工神经网络 (ANN) 应用移动窗口。最后,我们研究了四种验证分类输出的策略。

  4. 虽然所有三种机器学习算法在训练条件下表现良好(Kappa 值:RF(0.82),SVM(0.78),ANN(0.85)),但从圈养转移到野生狐狸时,建立的方法,RF 和 SVM,无法对不同的行为进行分类。相比之下,使用 ANN 和移动窗口进行行为分类推断出不同的行为,并为大多数个体提供了一致的结果。

  5. 与文献中以前提出的方法相比,我们的方法是一个重大改进,因为它为野生狐狸的行为产生了合理的结果。我们能够推断从未在野外观察到的野生动物的行为,并进一步说明输出的可信度。该框架不仅限于狐狸,还可以应用于推断许多其他物种的行为,从而为行为生态学的新进展提供支持。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5121/7200095/4374dfe173ce/pone.0227317.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验