Swiss Centre for Applied Human Toxicology (SCAHT), University of Basel, Basel, Switzerland; Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
Division of Molecular and Systems Toxicology, Department of Pharmaceutical Sciences, University of Basel, Klingelbergstrasse 50, 4056 Basel, Switzerland.
Biochem Pharmacol. 2020 Feb;172:113781. doi: 10.1016/j.bcp.2019.113781. Epub 2019 Dec 27.
Anabolic-androgenic steroids (AAS) are testosterone derivatives developed for steroid-replacement and treatment of debilitating conditions. They are widely used by athletes in elite sports and bodybuilding due to their muscle-building and performance-enhancing properties. Excessive AAS use is associated with cardiovascular diseases, mood changes, endocrine and metabolic disorders; however, the underlying mechanisms remain unknown. Selective androgen receptor modulators (SARMs) aim to reduce adverse androgenic effects, while maximizing anabolic effects. This study assessed potential steroidogenic disturbances of 19 AAS and 3 SARMs in human adrenocortical carcinoma H295R cells, comparing basal and forskolin-activated states by mass spectrometry-based quantification of nine major adrenal steroids. Mesterolone, mestanolone and methenolone increased mineralocorticoid but decreased adrenal androgen production, indicating CYP17A1 dysfunction. Cell-free activity assays failed to detect direct CYP17A1 inhibition, supported by molecular modeling. The mRNA expression levels of 3β-HSD2, CYP17A1, CYP21A2, CYP11B1 and CYP11B2 were unaffected, suggesting indirect inhibition involving post-translational modification and/or impaired protein stability. Clostebol and oxymetholone decreased corticosteroid but increased dehydroepiandrosterone biosynthesis in H295R cells, suggesting CYP21A2 inhibition, sustained by molecular modeling. These AAS did not affect the expression of key steroidogenic genes. None of the SARMs tested interfered with steroidogenesis. The chosen approach allowed the grouping of AAS according to their steroidogenic-disrupting effects and provided initial mechanistic information. Mesterolone, mestanolone and methenolone potentially promote hypertension and cardiovascular diseases via excessive mineralocorticoid biosynthesis. Clostebol and oxymetholone might cause metabolic disturbances by suppressing corticosteroid production, resulting in adrenal hyperplasia. The non-steroidal SARMs exhibit an improved safety profile and represent a preferred therapeutic option.
合成代谢雄激素类固醇(AAS)是为替代治疗和治疗衰弱性疾病而开发的睾酮衍生物。由于其具有肌肉增强和性能增强的特性,因此在精英运动和健美运动员中广泛使用。过度使用 AAS 会导致心血管疾病、情绪变化、内分泌和代谢紊乱;然而,其潜在机制尚不清楚。选择性雄激素受体调节剂(SARMs)旨在减少不良的雄激素作用,同时最大限度地提高合成代谢作用。本研究通过基于质谱的九种主要肾上腺类固醇的定量分析,评估了 19 种 AAS 和 3 种 SARMs 在人肾上腺皮质癌细胞 H295R 中的潜在类固醇生成障碍,比较了基础状态和 forskolin 激活状态。美睾酮、美雄酮和美替诺龙增加了盐皮质激素但减少了肾上腺雄激素的产生,表明 CYP17A1 功能障碍。细胞游离活性测定未能检测到直接的 CYP17A1 抑制,分子建模也支持这一结果。3β-HSD2、CYP17A1、CYP21A2、CYP11B1 和 CYP11B2 的 mRNA 表达水平不受影响,表明涉及翻译后修饰和/或蛋白质稳定性受损的间接抑制。氯司替勃和羟甲烯龙减少了 H295R 细胞中的皮质类固醇但增加了脱氢表雄酮的生物合成,表明 CYP21A2 抑制,分子建模也支持这一结果。这些 AAS 不影响关键类固醇生成基因的表达。所测试的 SARMs 均未干扰类固醇生成。所选择的方法允许根据其类固醇生成干扰作用对 AAS 进行分组,并提供了初步的机制信息。美睾酮、美雄酮和美替诺龙可能通过过度的盐皮质激素生物合成促进高血压和心血管疾病。氯司替勃和羟甲烯龙可能通过抑制皮质类固醇的产生导致肾上腺增生而引起代谢紊乱。非甾体 SARMs 表现出改善的安全性,是一种更优的治疗选择。