Center for Biomarker Research and Precision Medicine, Virginia Commonwealth University, Richmond, Virginia.
Douglas Mental Health University Institute and McGill University, Montréal, Québec, Canada.
Biol Psychiatry. 2020 Mar 1;87(5):431-442. doi: 10.1016/j.biopsych.2019.10.014. Epub 2019 Nov 1.
We sought to characterize methylation changes in brain and blood associated with major depressive disorder (MDD). As analyses of bulk tissue may obscure association signals and hamper the biological interpretation of findings, these changes were studied on a cell type-specific level.
In 3 collections of human postmortem brain (n = 206) and 1 collection of blood samples (N = 1132) of MDD cases and controls, we used epigenomic deconvolution to perform cell type-specific methylome-wide association studies within subpopulations of neurons/glia for the brain data and granulocytes/T cells/B cells/monocytes for the blood data. Sorted neurons/glia from a fourth postmortem brain collection (n = 58) were used for validation purposes.
Cell type-specific methylome-wide association studies identified multiple findings in neurons/glia that were detected across brain collections and were reproducible in physically sorted nuclei. Cell type-specific analyses in blood samples identified methylome-wide significant associations in T cells, monocytes, and whole blood that replicated findings from a past methylation study of MDD. Pathway analyses implicated p75 neurotrophin receptor/nerve growth factor signaling and innate immune toll-like receptor signaling in MDD. Top results in neurons, glia, bulk brain, T cells, monocytes, and whole blood were enriched for genes supported by genome-wide association studies for MDD and other psychiatric disorders.
We both replicated and identified novel MDD-methylation associations in human brain and blood samples at a cell type-specific level. Our results provide mechanistic insights into how the immune system may interact with the brain to affect MDD susceptibility. Importantly, our findings involved associations with MDD in human samples that implicated many closely related biological pathways. These disease-linked sites and pathways represent promising new therapeutic targets for MDD.
我们试图描述与重度抑郁症(MDD)相关的大脑和血液中的甲基化变化。由于对大量组织进行分析可能会掩盖关联信号并阻碍对研究结果的生物学解释,因此我们在细胞类型特异性水平上研究了这些变化。
在三个人类死后大脑(n=206)和一个血液样本(N=1132)的集合中,我们使用表观基因组分解法在神经元/神经胶质细胞的亚群中进行大脑数据的细胞类型特异性甲基组全关联研究,在粒细胞/T 细胞/ B 细胞/单核细胞的血液数据中进行细胞类型特异性甲基组全关联研究。第四个死后大脑集合(n=58)中分离的神经元/神经胶质细胞用于验证目的。
细胞类型特异性甲基组全关联研究在神经元/神经胶质细胞中确定了多个发现,这些发现跨越了大脑集合,并在物理分离的细胞核中具有可重复性。血液样本中的细胞类型特异性分析确定了 T 细胞、单核细胞和全血中的甲基组全关联显著关联,这些关联复制了过去 MDD 甲基化研究的发现。途径分析表明,p75 神经生长因子受体/神经生长因子信号和先天免疫 Toll 样受体信号在 MDD 中起作用。在神经元、神经胶质、大脑、T 细胞、单核细胞和全血中排名靠前的结果,与 MDD 和其他精神疾病的全基因组关联研究支持的基因富集。
我们在人类大脑和血液样本的细胞类型特异性水平上既复制了先前的 MDD 甲基化关联,又发现了新的关联。我们的研究结果为免疫系统如何与大脑相互作用影响 MDD 易感性提供了机制上的见解。重要的是,我们在人类样本中发现的与 MDD 相关的关联涉及许多密切相关的生物学途径,这些疾病相关的位点和途径代表了 MDD 的有前途的新治疗靶点。