Suppr超能文献

使用深度卷积神经网络和氡累积分布变换检测乳腺致密女性的乳腺钼靶隐匿性癌症。

Detecting mammographically occult cancer in women with dense breasts using deep convolutional neural network and Radon Cumulative Distribution Transform.

作者信息

Lee Juhun, Nishikawa Robert M

机构信息

University of Pittsburgh, Department of Radiology, Pittsburgh, Pennsylvania, United States.

出版信息

J Med Imaging (Bellingham). 2019 Oct;6(4):044502. doi: 10.1117/1.JMI.6.4.044502. Epub 2019 Dec 24.

Abstract

We have applied the Radon Cumulative Distribution Transform (RCDT) as an image transformation to highlight the subtle difference between left and right mammograms to detect mammographically occult (MO) cancer in women with dense breasts and negative screening mammograms. We developed deep convolutional neural networks (CNNs) as classifiers for estimating the probability of having MO cancer. We acquired screening mammograms of 333 women (97 unilateral MO cancer) with dense breasts and at least two consecutive mammograms and used the immediate prior mammograms, which radiologists interpreted as negative. We used fivefold cross validation to divide our dataset into a training and independent test sets with ratios of 0.8:0.2. We set aside 10% of the training set as a validation set. We applied RCDT on the left and right mammograms of each view. We applied inverse Radon transform to represent the resulting RCDT images in the image domain. We then fine-tuned a VGG16 network pretrained on ImageNet using the resulting images per each view. The CNNs achieved mean areas under the receiver operating characteristic (AUC) curve of 0.73 (standard error, SE = 0.024) and 0.73 (SE = 0.04) for the craniocaudal and mediolateral oblique views, respectively. We combined the scores from two CNNs by training a logistic regression classifier and it achieved a mean AUC of 0.81 (SE = 0.032). In conclusion, we showed that inverse Radon-transformed RCDT images contain information useful for detecting MO cancers and that deep CNNs could learn such information.

摘要

我们应用了拉东累积分布变换(RCDT)作为一种图像变换,以突出左右乳房X线照片之间的细微差异,从而在乳房致密且乳房X线筛查结果为阴性的女性中检测出乳房X线隐匿性(MO)癌症。我们开发了深度卷积神经网络(CNN)作为分类器,用于估计患有MO癌症的概率。我们获取了333名乳房致密且至少有两张连续乳房X线照片的女性(97例单侧MO癌症)的筛查乳房X线照片,并使用了放射科医生解释为阴性的紧前一次乳房X线照片。我们使用五折交叉验证将数据集按0.8:0.2的比例分为训练集和独立测试集。我们留出训练集的10%作为验证集。我们对每个视图的左右乳房X线照片应用RCDT。我们应用逆拉东变换在图像域中表示所得的RCDT图像。然后,我们使用每个视图的所得图像对在ImageNet上预训练的VGG16网络进行微调。对于头尾位和内外侧斜位视图,CNN在接收器操作特征(AUC)曲线下的平均面积分别为0.73(标准误差,SE = 0.024)和0.73(SE = 0.04)。我们通过训练逻辑回归分类器来合并两个CNN的分数,其平均AUC为0.81(SE = 0.032)。总之,我们表明逆拉东变换的RCDT图像包含有助于检测MO癌症的信息,并且深度CNN可以学习此类信息。

相似文献

引用本文的文献

本文引用的文献

5
A survey on deep learning in medical image analysis.深度学习在医学图像分析中的应用研究综述。
Med Image Anal. 2017 Dec;42:60-88. doi: 10.1016/j.media.2017.07.005. Epub 2017 Jul 26.
9
The Radon Cumulative Distribution Transform and Its Application to Image Classification.氡累积分布变换及其在图像分类中的应用。
IEEE Trans Image Process. 2016 Feb;25(2):920-34. doi: 10.1109/TIP.2015.2509419. Epub 2015 Dec 17.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验