Dupuy Stéphane, Gaetano Raffaele, Le Mézo Lionel
CIRAD, UMR TETIS, F-97410 Saint-Pierre, Réunion, France.
CIRAD, UMR TETIS, F-34398 Montpellier, France.
Data Brief. 2019 Dec 5;28:104934. doi: 10.1016/j.dib.2019.104934. eCollection 2020 Feb.
We here present a reference database and three land use maps produced in 2017 over the Reunion island using a machine learning based methodology. These maps are the result of a satellite image analysis performed using the Moringa land cover processing chain developed in our laboratory. The input dataset for map production consists of a single very high spatial resolution Pleiades images, a time series of Sentinel-2 and Landsat-8 images, a Digital Terrain Model (DTM) and the aforementioned reference database. The Moringa chain adopts an object based approach: the Pleiades image provides spatial accuracy with the delineation of land samples via a segmentation process, the time series provides information on landscape and vegetation dynamics, the DTM provides information on topography and the reference database provides annotated samples (6256 polygons) for the supervised classification process and the validation of the results. The three land use maps follow a hierarchical nomenclature ranging from 4 classes for the least detailed level to 34 classes for the most detailed one. The validation of these maps shows a good quality of the results with overall accuracy rates ranging from 86% to 97%. The maps are freely accessible and used by researchers, land managers (State services and local authorities) and also private companies.
我们在此展示一个参考数据库以及2017年使用基于机器学习的方法在留尼汪岛上生成的三张土地利用图。这些地图是使用我们实验室开发的辣木土地覆盖处理链对卫星图像进行分析的结果。地图制作的输入数据集包括一张单一的超高空间分辨率昴宿星图像、一系列哨兵2号和陆地卫星8号图像、一个数字地形模型(DTM)以及上述参考数据库。辣木处理链采用基于对象的方法:昴宿星图像通过分割过程在划分土地样本时提供空间精度,时间序列提供有关景观和植被动态的信息,DTM提供有关地形的信息,参考数据库为监督分类过程和结果验证提供带注释的样本(6256个多边形)。这三张土地利用图遵循分级命名法,从最粗略的4个类别到最详细的34个类别。这些地图的验证显示结果质量良好,总体准确率在86%至97%之间。这些地图可供研究人员、土地管理者(国家服务机构和地方当局)以及私人公司免费获取和使用。