Suppr超能文献

同时示踪剂和位置和质量同位素的统一模型用于定量肝脏中的代谢通量。

Simultaneous tracers and a unified model of positional and mass isotopomers for quantification of metabolic flux in liver.

机构信息

Center for Human Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

Department of Clinical Nutrition, The University of Texas Southwestern Medical Center, Dallas, TX, 75390, USA.

出版信息

Metab Eng. 2020 May;59:1-14. doi: 10.1016/j.ymben.2019.12.005. Epub 2019 Dec 28.

Abstract

Computational models based on the metabolism of stable isotope tracers can yield valuable insight into the metabolic basis of disease. The complexity of these models is limited by the number of tracers and the ability to characterize tracer labeling in downstream metabolites. NMR spectroscopy is ideal for multiple tracer experiments since it precisely detects the position of tracer nuclei in molecules, but it lacks sensitivity for detecting low-concentration metabolites. GC-MS detects stable isotope mass enrichment in low-concentration metabolites, but lacks nuclei and positional specificity. We performed liver perfusions and in vivo infusions of H and C tracers, yielding complex glucose isotopomers that were assigned by NMR and fit to a newly developed metabolic model. Fluxes regressed from H and C NMR positional isotopomer enrichments served to validate GC-MS-based flux estimates obtained from the same experimental samples. NMR-derived fluxes were largely recapitulated by modeling the mass isotopomer distributions of six glucose fragment ions measured by GC-MS. Modest differences related to limited fragmentation coverage of glucose C1-C3 were identified, but fluxes such as gluconeogenesis, glycogenolysis, cataplerosis and TCA cycle flux were tightly correlated between the methods. Most importantly, modeling of GC-MS data could assign fluxes in primary mouse hepatocytes, an experiment that is impractical by H or C NMR.

摘要

基于稳定同位素示踪剂代谢的计算模型可以为疾病的代谢基础提供有价值的见解。这些模型的复杂性受到示踪剂数量和下游代谢物中示踪剂标记特征能力的限制。由于 NMR 光谱精确地检测分子中示踪核的位置,因此非常适合进行多种示踪实验,但它对检测低浓度代谢物的灵敏度有限。GC-MS 可检测低浓度代谢物中稳定同位素的质量丰度,但缺乏核和位置特异性。我们进行了肝脏灌注和 H 和 C 示踪物的体内输注,产生了通过 NMR 分配并拟合到新开发的代谢模型的复杂葡萄糖同位素异构体。从 H 和 C NMR 位置同位素异构体富集回归的通量用于验证从相同实验样品获得的基于 GC-MS 的通量估计。通过对 GC-MS 测量的六个葡萄糖片段离子的质量同位素分布进行建模,很大程度上再现了 NMR 衍生的通量。鉴定出与葡萄糖 C1-C3 有限片段化覆盖相关的适度差异,但通量(如糖异生、糖原分解、脱羧和 TCA 循环通量)在两种方法之间紧密相关。最重要的是,GC-MS 数据的建模可以分配原发性小鼠肝细胞中的通量,这是通过 H 或 C NMR 进行的实验不可行的。

相似文献

2
Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.
Am J Physiol Endocrinol Metab. 2015 Jul 15;309(2):E191-203. doi: 10.1152/ajpendo.00003.2015. Epub 2015 May 19.
3
Metabolic profiling by 13C-NMR spectroscopy: [1,2-13C2]glucose reveals a heterogeneous metabolism in human leukemia T cells.
Biochimie. 2006 May;88(5):437-48. doi: 10.1016/j.biochi.2005.10.004. Epub 2005 Nov 7.
4
Elementary metabolite units (EMU): a novel framework for modeling isotopic distributions.
Metab Eng. 2007 Jan;9(1):68-86. doi: 10.1016/j.ymben.2006.09.001. Epub 2006 Sep 17.
7
An integrated (2)H and (13)C NMR study of gluconeogenesis and TCA cycle flux in humans.
Am J Physiol Endocrinol Metab. 2001 Oct;281(4):E848-56. doi: 10.1152/ajpendo.2001.281.4.E848.

引用本文的文献

3
Mapping endocrine networks by stable isotope tracing.
Curr Opin Endocr Metab Res. 2022 Oct;26:100381. doi: 10.1016/j.coemr.2022.100381.
5
Hepatic malonyl-CoA synthesis restrains gluconeogenesis by suppressing fat oxidation, pyruvate carboxylation, and amino acid availability.
Cell Metab. 2024 May 7;36(5):1088-1104.e12. doi: 10.1016/j.cmet.2024.02.004. Epub 2024 Mar 5.
6
Effects of hepatic mitochondrial pyruvate carrier deficiency on lipogenesis and gluconeogenesis in mice.
iScience. 2023 Oct 12;26(11):108196. doi: 10.1016/j.isci.2023.108196. eCollection 2023 Nov 17.
9
Loss of hepatic phosphoenolpyruvate carboxykinase 1 dysregulates metabolic responses to acute exercise but enhances adaptations to exercise training in mice.
Am J Physiol Endocrinol Metab. 2023 Jan 1;324(1):E9-E23. doi: 10.1152/ajpendo.00222.2022. Epub 2022 Nov 9.

本文引用的文献

2
Pyruvate-Carboxylase-Mediated Anaplerosis Promotes Antioxidant Capacity by Sustaining TCA Cycle and Redox Metabolism in Liver.
Cell Metab. 2019 Jun 4;29(6):1291-1305.e8. doi: 10.1016/j.cmet.2019.03.014. Epub 2019 Apr 18.
3
Targeted Determination of Tissue Energy Status by LC-MS/MS.
Anal Chem. 2019 May 7;91(9):5881-5887. doi: 10.1021/acs.analchem.9b00217. Epub 2019 Apr 12.
4
A guide to C metabolic flux analysis for the cancer biologist.
Exp Mol Med. 2018 Apr 16;50(4):1-13. doi: 10.1038/s12276-018-0060-y.
7
8
Tracer-based assessments of hepatic anaplerotic and TCA cycle flux: practicality, stoichiometry, and hidden assumptions.
Am J Physiol Endocrinol Metab. 2015 Oct 15;309(8):E727-35. doi: 10.1152/ajpendo.00216.2015. Epub 2015 Sep 1.
9
Understanding Bland Altman analysis.
Biochem Med (Zagreb). 2015 Jun 5;25(2):141-51. doi: 10.11613/BM.2015.015. eCollection 2015.
10
Mass spectrometry-based microassay of (2)H and (13)C plasma glucose labeling to quantify liver metabolic fluxes in vivo.
Am J Physiol Endocrinol Metab. 2015 Jul 15;309(2):E191-203. doi: 10.1152/ajpendo.00003.2015. Epub 2015 May 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验