Suppr超能文献

高通量放射性 TLC 分析。

High-throughput radio-TLC analysis.

机构信息

Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, University of California Los Angeles, Los Angeles, CA 90095, USA.

Crump Institute for Molecular Imaging, University of California Los Angeles, Los Angeles, CA 90095, USA; Physics in Biology and Medicine Interdepartmental Graduate Program, University of California Los Angeles, Los Angeles, CA 90095, USA.

出版信息

Nucl Med Biol. 2020 Mar-Apr;82-83:41-48. doi: 10.1016/j.nucmedbio.2019.12.003. Epub 2019 Dec 17.

Abstract

INTRODUCTION

Radio thin layer chromatography (radio-TLC) is commonly used to analyze purity of radiopharmaceuticals or to determine the reaction conversion when optimizing radiosynthesis processes. In applications where there are few radioactive species, radio-TLC is preferred over radio-high-performance liquid chromatography due to its simplicity and relatively quick analysis time. However, with current radio-TLC methods, it remains cumbersome to analyze a large number of samples during reaction optimization. In a couple of studies, Cerenkov luminescence imaging (CLI) has been used for reading radio-TLC plates spotted with a variety of isotopes. We show that this approach can be extended to develop a high-throughput approach for radio-TLC analysis of many samples.

METHODS

The high-throughput radio-TLC analysis was carried out by performing parallel development of multiple radioactive samples spotted on a single TLC plate, followed by simultaneous readout of the separated samples using Cerenkov imaging. Using custom-written MATLAB software, images were processed and regions of interest (ROIs) were drawn to enclose the radioactive regions/spots. For each sample, the proportion of integrated signal in each ROI was computed. Various crude samples of [F]fallypride, [F]FET and [Lu]Lu-PSMA-617 were prepared for demonstration of this new method.

RESULTS

Benefiting from a parallel developing process and high resolution of CLI-based readout, total analysis time for eight [F]fallypride samples was 7.5 min (2.5 min for parallel developing, 5 min for parallel readout), which was significantly shorter than the 48 min needed using conventional approaches (24 min for sequential developing, 24 min for sequential readout on a radio-TLC scanner). The greater separation resolution of CLI enabled the discovery of a low-abundance side product from a crude [F]FET sample that was not discernable using the radio-TLC scanner. Using the CLI-based readout method, we also observed that high labeling efficiency (99%) of [Lu]Lu-PSMA-617 can be achieved in just 10 min, rather than the typical 30 min timeframe used.

CONCLUSIONS

Cerenkov imaging in combination with parallel developing of multiple samples on a single TLC plate proved to be a practical method for rapid, high-throughput radio-TLC analysis.

摘要

简介

放射性薄层色谱(radio-TLC)常用于分析放射性药物的纯度,或在优化放射合成过程时确定反应转化率。在放射性物质数量较少的应用中,由于其简单性和相对较快的分析时间,放射性 TLC 优于放射性高效液相色谱。然而,目前的放射性 TLC 方法在反应优化过程中分析大量样品仍然很繁琐。在几项研究中,切伦科夫发光成像(CLI)已用于读取用各种同位素点样的放射性 TLC 板。我们表明,这种方法可以扩展为开发高通量的放射性 TLC 分析方法,用于分析大量样品。

方法

通过在单个 TLC 板上同时平行开发多个放射性样品,然后使用切伦科夫成像同时读取分离的样品,进行高通量放射性 TLC 分析。使用自定义编写的 MATLAB 软件,处理图像并绘制感兴趣区域(ROI)以包围放射性区域/斑点。对于每个样品,计算每个 ROI 中积分信号的比例。为了演示这种新方法,制备了各种粗制的[F]fallypride、[F]FET 和[Lu]Lu-PSMA-617 样品。

结果

受益于平行开发过程和基于 CLI 的读取的高分辨率,八个[F]fallypride 样品的总分析时间为 7.5 分钟(平行开发 2.5 分钟,平行读取 5 分钟),明显短于使用传统方法(顺序开发 24 分钟,顺序在放射性 TLC 扫描仪上读取 24 分钟)所需的 48 分钟。CLI 的更高分离分辨率使我们能够从粗制[F]FET 样品中发现一种低丰度的副产物,而这在放射性 TLC 扫描仪上是无法识别的。使用基于 CLI 的读取方法,我们还观察到,[Lu]Lu-PSMA-617 的高标记效率(99%)可以在 10 分钟内实现,而不是典型的 30 分钟。

结论

切伦科夫成像与在单个 TLC 板上同时平行开发多个样品相结合,被证明是一种快速、高通量放射性 TLC 分析的实用方法。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/538b/6956702/0a7978ad199f/nihms-1547934-f0001.jpg

相似文献

1
High-throughput radio-TLC analysis.高通量放射性 TLC 分析。
Nucl Med Biol. 2020 Mar-Apr;82-83:41-48. doi: 10.1016/j.nucmedbio.2019.12.003. Epub 2019 Dec 17.

引用本文的文献

本文引用的文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验