Suppr超能文献

DFT 预测的德拜模型中有限温度热力学性质的不确定性量化。

Uncertainty quantification of DFT-predicted finite temperature thermodynamic properties within the Debye model.

机构信息

Department of Mechanical Engineering, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

Wilton E. Scott Institute for Energy Innovation, Carnegie Mellon University, Pittsburgh, Pennsylvania 15213, USA.

出版信息

J Chem Phys. 2019 Dec 28;151(24):244702. doi: 10.1063/1.5132332.

Abstract

Density functional theory (DFT) calculations are routinely used to screen for functional materials for a variety of applications. This screening is often carried out with a few descriptors, which use ground-state properties that typically ignore finite temperature effects. Finite-temperature effects can be included by calculating the vibration properties, and this can greatly improve the fidelity of computational screening. An important challenge for DFT-based screening is the sensitivity of the predictions to the choice of the exchange correlation function. In this work, we rigorously explore the sensitivity of finite temperature thermodynamic properties to the choice of the exchange correlation functional using the built-in error estimation capabilities within the Bayesian Error Estimation Functional-van der Waals (BEEF-vdW). The vibrational properties are estimated using the Debye model, and we quantify the uncertainty associated with finite-temperature properties for a diverse collection of materials. We find good agreement with experiment and small spread in predictions over different exchange correlation functionals for Mg, AlO, Al, Ca, and GaAs. In the case of Li, LiO, and NiO, however, we find a large spread in predictions as well as disagreement between experiment and functionals due to complex bonding environments. While the energetics generated by the BEEF-vdW ensemble is typically normal, the complex mapping through the Debye model leads to the derived finite temperature properties having non-Gaussian behavior. We test a wide variety of probability distributions that best represent the finite temperature distribution and find that properties such as specific heat, Gibbs free energy, entropy, and thermal expansion coefficient are well described by normal or transformed normal distributions, while the prediction spread of volume at a given temperature does not appear to be drawn from a single distribution. Given the computational efficiency of the approach, we believe that uncertainty quantification should be routinely incorporated into finite-temperature predictions. In order to facilitate this, we have open-sourced the code base under the name dePye.

摘要

密度泛函理论(DFT)计算通常用于筛选各种应用的功能材料。这种筛选通常使用几个描述符来进行,这些描述符使用的是通常忽略有限温度效应的基态性质。通过计算振动性质可以包含有限温度效应,这可以大大提高计算筛选的保真度。基于 DFT 的筛选的一个重要挑战是预测对交换相关函数选择的敏感性。在这项工作中,我们使用内置的贝叶斯误差估计功能-范德华(BEEF-vdW)中的误差估计功能,严格地研究了有限温度热力学性质对交换相关函数选择的敏感性。振动性质使用德拜模型进行估计,我们量化了与各种材料的有限温度性质相关的不确定性。我们发现对于 Mg、AlO、Al、Ca 和 GaAs,实验结果与预测结果吻合较好,不同交换相关函数之间的预测值差异较小。然而,对于 Li、LiO 和 NiO,我们发现由于复杂的键合环境,预测值差异较大,实验结果与函数之间存在不一致。虽然 BEEF-vdW 集合产生的能量学通常是正态的,但通过德拜模型的复杂映射导致导出的有限温度性质具有非正态行为。我们测试了多种最能代表有限温度分布的概率分布,并发现比热、吉布斯自由能、熵和热膨胀系数等性质可以很好地用正态或变换正态分布来描述,而给定温度下体积的预测范围似乎并不来自于单个分布。考虑到该方法的计算效率,我们认为应该常规地将不确定性量化纳入有限温度预测中。为了促进这一点,我们将代码库以 dePye 的名义开源。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验