Suppr超能文献

使用混合优化器的高效网络架构搜索

Efficient Network Architecture Search Using Hybrid Optimizer.

作者信息

Wang Ting-Ting, Chu Shu-Chuan, Hu Chia-Cheng, Jia Han-Dong, Pan Jeng-Shyang

机构信息

College of Computer Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China.

College of Artificial Intelligence, Yango University, Fuzhou 350015, China.

出版信息

Entropy (Basel). 2022 May 6;24(5):656. doi: 10.3390/e24050656.

Abstract

Manually designing a convolutional neural network (CNN) is an important deep learning method for solving the problem of image classification. However, most of the existing CNN structure designs consume a significant amount of time and computing resources. Over the years, the demand for neural architecture search (NAS) methods has been on the rise. Therefore, we propose a novel deep architecture generation model based on Aquila optimization (AO) and a genetic algorithm (GA). The main contributions of this paper are as follows: Firstly, a new encoding strategy representing the CNN coding structure is proposed, so that the evolutionary computing algorithm can be combined with CNN. Secondly, a new mechanism for updating location is proposed, which incorporates three typical operators from GA cleverly into the model we have designed so that the model can find the optimal solution in the limited search space. Thirdly, the proposed method can deal with the variable-length CNN structure by adding skip connections. Fourthly, combining traditional CNN layers and residual blocks and introducing a grouping strategy provides greater possibilities for searching for the optimal CNN structure. Additionally, we use two notable datasets, consisting of the MNIST and CIFAR-10 datasets for model evaluation. The experimental results show that our proposed model has good results in terms of search accuracy and time.

摘要

手动设计卷积神经网络(CNN)是解决图像分类问题的一种重要深度学习方法。然而,现有的大多数CNN结构设计都消耗大量时间和计算资源。多年来,对神经架构搜索(NAS)方法的需求一直在增加。因此,我们提出了一种基于天鹰座优化(AO)和遗传算法(GA)的新型深度架构生成模型。本文的主要贡献如下:首先,提出了一种表示CNN编码结构的新编码策略,以便进化计算算法能够与CNN相结合。其次,提出了一种新的位置更新机制,该机制巧妙地将遗传算法中的三个典型算子纳入我们设计的模型中,使模型能够在有限的搜索空间中找到最优解。第三,所提出的方法可以通过添加跳跃连接来处理可变长度的CNN结构。第四,将传统CNN层和残差块相结合并引入分组策略,为搜索最优CNN结构提供了更大的可能性。此外,我们使用两个著名的数据集,即MNIST和CIFAR-10数据集进行模型评估。实验结果表明,我们提出的模型在搜索精度和时间方面都有良好的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2f70/9140713/0f818ce22cb8/entropy-24-00656-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验