Suppr超能文献

0.5r 作为圆柱电离室的有效测量点可能会导致电子百分深度剂量出现系统偏差。

The use of 0.5r as an effective point of measurement for cylindrical chambers may result in a systematic shift of electron percentage depth doses.

机构信息

CancerCare Manitoba, Winnipeg, Canada.

Department of Physics & Astronomy, University of Manitoba, Winnipeg, Canada.

出版信息

J Appl Clin Med Phys. 2020 Jan;21(1):117-126. doi: 10.1002/acm2.12797. Epub 2020 Jan 3.

Abstract

Electron dosimetry can be performed using cylindrical chambers, plane-parallel chambers, and diode detectors. The finite volume of these detectors results in a displacement effect which is taken into account using an effective point of measurement (EPOM). Dosimetry protocols have recommended a shift of 0.5 r for cylindrical chambers; however, various studies have shown that the optimal shift may deviate from this recommended value. This study investigated the effect that the selection of EPOM shift for cylindrical chamber has on percentage depth dose (PDD) curves. Depth dose curves were measured in a water phantom for electron beams with energies ranging from 6 to 18 MeV. The detectors investigated were of three different types: diodes (Diode-E PTW 60017 and SFD IBA), cylindrical (Semiflex PTW 31010, PinPoint PTW 31015, and A12 Exradin), and parallel plate ionization chambers (Advanced Markus PTW 34045 and Markus PTW 23343). Depth dose curves measured with Diode-E and Advanced Markus agreed within 0.2 mm at R except for 18 MeV and extremely large field size. The PDDs measured with the Semiflex chamber and Exradin A12 were about 1.1 mm (with respect to the Advanced Markus chamber) shallower than those measured with the other detectors using a 0.5 r shift. The difference between the PDDs decreased when a Pinpoint chamber, with a smaller cavity radius, was used. Agreement improved at lower energies, with the use of previously published EPOM corrections (0.3 r ). Therefore, the use of 0.5 r as an EPOM may result in a systematic shift of the therapeutic portion of the PDD (distances < R ). Our results suggest that a 0.1 r shift is more appropriate for one chamber model (Semiflex PTW 31010).

摘要

电子剂量学可以使用圆柱形腔室、平行平板腔室和二极管探测器进行。这些探测器的有限体积导致了位移效应,需要使用有效测量点(EPOM)来考虑。剂量学协议建议对圆柱形腔室进行 0.5 r 的偏移;然而,各种研究表明,最佳偏移可能偏离该推荐值。本研究探讨了选择圆柱形腔室的 EPOM 偏移对百分深度剂量(PDD)曲线的影响。在水模体中,对能量范围为 6 至 18 MeV 的电子束进行了深度剂量曲线测量。研究的探测器有三种不同类型:二极管(Diode-E PTW 60017 和 SFD IBA)、圆柱形(Semiflex PTW 31010、PinPoint PTW 31015 和 A12 Exradin)和平行板电离室(Advanced Markus PTW 34045 和 Markus PTW 23343)。除了 18 MeV 和非常大的射野尺寸外,Diode-E 和 Advanced Markus 测量的深度剂量曲线在 R 处的差异在 0.2 mm 以内。使用 0.5 r 偏移,Semiflex 腔室和 Exradin A12 测量的 PDD 比使用其他探测器测量的 PDD 浅约 1.1 mm(相对于 Advanced Markus 腔室)。当使用具有较小腔半径的 Pinpoint 腔室时,差异会减小。在较低能量下,使用先前发布的 EPOM 校正(0.3 r ),一致性会提高。因此,使用 0.5 r 作为 EPOM 可能会导致 PDD 的治疗部分(距离< R )出现系统偏移。我们的结果表明,对于一个腔室模型(Semiflex PTW 31010),0.1 r 的偏移更合适。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d9a/6964751/04bc8bc46852/ACM2-21-117-g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验