Physics Department, Carleton Laboratory for Radiotherapy Physics, Carleton University, 1125 Colonel By Drive, Ottawa, Ontario K1S 5B6, Canada.
Med Phys. 2013 Dec;40(12):121722. doi: 10.1118/1.4829577.
To investigate recommendations for reference dosimetry of electron beams and gradient effects for the NE2571 chamber and to provide beam quality conversion factors using Monte Carlo simulations of the PTW Roos and NE2571 ion chambers.
The EGSnrc code system is used to calculate the absorbed dose-to-water and the dose to the gas in fully modeled ion chambers as a function of depth in water. Electron beams are modeled using realistic accelerator simulations as well as beams modeled as collimated point sources from realistic electron beam spectra or monoenergetic electrons. Beam quality conversion factors are calculated with ratios of the doses to water and to the air in the ion chamber in electron beams and a cobalt-60 reference field. The overall ion chamber correction factor is studied using calculations of water-to-air stopping power ratios.
The use of an effective point of measurement shift of 1.55 mm from the front face of the PTW Roos chamber, which places the point of measurement inside the chamber cavity, minimizes the difference between R50, the beam quality specifier, calculated from chamber simulations compared to that obtained using depth-dose calculations in water. A similar shift minimizes the variation of the overall ion chamber correction factor with depth to the practical range and reduces the root-mean-square deviation of a fit to calculated beam quality conversion factors at the reference depth as a function of R50. Similarly, an upstream shift of 0.34 rcav allows a more accurate determination of R50 from NE2571 chamber calculations and reduces the variation of the overall ion chamber correction factor with depth. The determination of the gradient correction using a shift of 0.22 rcav optimizes the root-mean-square deviation of a fit to calculated beam quality conversion factors if all beams investigated are considered. However, if only clinical beams are considered, a good fit to results for beam quality conversion factors is obtained without explicitly correcting for gradient effects. The inadequacy of R50 to uniquely specify beam quality for the accurate selection of kQ factors is discussed. Systematic uncertainties in beam quality conversion factors are analyzed for the NE2571 chamber and amount to between 0.4% and 1.2% depending on assumptions used.
The calculated beam quality conversion factors for the PTW Roos chamber obtained here are in good agreement with literature data. These results characterize the use of an NE2571 ion chamber for reference dosimetry of electron beams even in low-energy beams.
研究 NE2571 腔室电子束参考剂量学和梯度效应的建议,并使用 PTW Roos 和 NE2571 离子腔室的蒙特卡罗模拟提供束质转换因子。
使用 EGSnrc 代码系统计算完全建模的离子腔室内水中深度的吸收剂量和气体剂量。电子束使用真实加速器模拟以及从真实电子束谱或单能电子模拟的准直点源进行建模。使用电子束中水和离子腔室内空气中剂量的比值以及钴-60 参考场计算束质转换因子。通过计算水-空气阻止本领比来研究整个离子腔室校正因子。
使用 PTW Roos 腔室的前表面向后移动 1.55mm 的有效测量点,将测量点置于腔室内,可将从腔室模拟计算得到的 R50(束质指定器)与在水中进行深度剂量计算得到的 R50 之间的差异最小化。类似的移动可使整个离子腔室校正因子随实际射程深度的变化最小,并减少参考深度处计算束质转换因子拟合的均方根偏差作为 R50 的函数。同样,上游移动 0.34rcav 可更准确地从 NE2571 腔室计算确定 R50,并减少整个离子腔室校正因子随深度的变化。如果考虑所有研究的光束,使用 0.22rcav 的移动确定梯度校正可优化对计算束质转换因子拟合的均方根偏差。但是,如果仅考虑临床光束,则无需显式校正梯度效应即可获得对束质转换因子结果的良好拟合。讨论了 R50 无法唯一指定束质以准确选择 kQ 因子的问题。根据所使用的假设,对 NE2571 腔室的束质转换因子的系统不确定性进行了分析,其值在 0.4%到 1.2%之间。
此处获得的 PTW Roos 腔室计算束质转换因子与文献数据吻合良好。这些结果说明了即使在低能束中,NE2571 离子腔室也可用于电子束的参考剂量学。