Suppr超能文献

微束放射治疗:一种微观和纳米剂量学蒙特卡罗研究。

Minibeam radiation therapy: A micro- and nano-dosimetry Monte Carlo study.

机构信息

Department of Radiobiology and regenerative medicine (SERAMED), Laboratory of Radiobiology of Accidental exposures (LRAcc), IRSN, F-92260, Fontenay-aux-Roses, France.

Imagerie et Modélisation en Neurobiologie et Cancérologie (IMNC), CNRS, Univ Paris-Sud, Université Paris-Saclay, F-91400, Orsay, France.

出版信息

Med Phys. 2020 Mar;47(3):1379-1390. doi: 10.1002/mp.14009. Epub 2020 Jan 28.

Abstract

PURPOSE

Minibeam radiation therapy (MBRT) is an innovative strategy based on a distinct dose delivery method that is administered using a series of narrow (submillimetric) parallel beams. To shed light on the biological effects of MBRT irradiation, we explored the micro- and nanodosimetric characteristics of three promising MBRT modalities (photon, electron, and proton) using Monte Carlo (MC) calculations.

METHODS

Irradiation with proton (100 MeV), electron (300 MeV), and photon (effective energy of 69 keV) minibeams were simulated using Geant4 MC code and the Geant4-DNA extension, which allows the simulation of energy transfer points with nanometric accuracy. As the target of the simulations, cells containing spherical nuclei with or without a detailed description of the DNA (deoxyribonucleic acid) geometry were placed at different depths in peak and valley regions in a water phantom. The energy deposition and number of events in the cell nuclei were recorded in the microdosimetry study, and the number of DNA breaks and their complexity were determined in the nanodosimetric study, where a multi-scale simulation approach was used for the latter. For DNA damage assessment, an adapted DBSCAN clustering algorithm was used. To compare the photon MBRT (xMBRT), electron MBRT (eMBRT), and proton MBRT (pMBRT) approaches, we considered the treatment of a brain tumor located at a depth of 75 mm.

RESULTS

Both mean energy deposition at micrometric scale and DNA damage in the "valley" cell nuclei were very low as compared with these parameters in the peak region at all depths for xMBRT and at depths of 0 to 30 mm and 0 to 50 mm for eMBRT and pMBRT, respectively. Only the charged minibeams were favorable for tumor control by producing similar effects in peak and valley cells after 70 mm. At the micrometer scale, the energy deposited per event pointed to a potential advantage of proton beams for tumor control, as more aggressive events could be expected at the end of their tracks. At the nanometer scale, all three MBRT modalities produced direct clustered DNA breaks, although the majority of damage (>93%) was composed of isolated single strand breaks. The pMBRT led to a significant increase in the proportion of clustered single strand breaks and double-strand breaks at the end of its range as compared to the entrance (7% at 75 mm vs 3% at 10 mm) in contrast to eMBRT and xMBRT. In the latter cases, the proportions of complex breaks remained constant, irrespective of the depth and region (peak or valley).

CONCLUSIONS

Enhanced normal tissue sparing can be expected with these three MBRT techniques. Among the three modalities, pMBRT offers an additional gain for radioresistant tumors, as it resulted in a higher number of complex DNA damage clusters in the tumor region. These results can aid understanding of the biological mechanisms of MBRT.

摘要

目的

微束放射治疗(MBRT)是一种基于独特剂量传递方法的创新策略,采用一系列狭窄(亚毫米级)平行束进行治疗。为了阐明 MBRT 照射的生物学效应,我们使用蒙特卡罗(MC)计算方法研究了三种有前途的 MBRT 模式(光子、电子和质子)的微剂量和纳米剂量特征。

方法

使用 Geant4 MC 代码和 Geant4-DNA 扩展模拟质子(100 MeV)、电子(300 MeV)和光子(有效能量 69 keV)微束照射,该扩展允许以纳米级精度模拟能量传递点。将含有球形核的细胞作为模拟的目标,无论是否详细描述 DNA(脱氧核糖核酸)几何形状,都放置在水模体中的峰值和谷值区域的不同深度处。在微剂量学研究中记录细胞核内的能量沉积和事件数量,在纳米剂量学研究中确定 DNA 断裂的数量和复杂性,后者使用多尺度模拟方法。对于 DNA 损伤评估,使用了一种经过改进的 DBSCAN 聚类算法。为了比较光子 MBRT(xMBRT)、电子 MBRT(eMBRT)和质子 MBRT(pMBRT)方法,我们考虑了位于 75 mm 深度处的脑肿瘤的治疗。

结果

与峰值区域相比,所有深度的 xMBRT 和 0 到 30 mm 和 0 到 50 mm 的 eMBRT 和 pMBRT 处的所有深度的微剂量和“谷”核内的 DNA 损伤相比,在微尺度上的平均能量沉积和 DNA 损伤都非常低。只有带电的微束才能通过在峰值和谷值细胞中产生相似的效应来控制肿瘤,因为在 70 mm 后可以预期更具侵略性的效应。在微米尺度上,每个事件沉积的能量表明质子束在肿瘤控制方面具有潜在优势,因为在其轨迹的末端可以预期更具侵略性的事件。在纳米尺度上,所有三种 MBRT 模式都产生了直接的簇状 DNA 断裂,尽管大多数损伤(>93%)由孤立的单链断裂组成。与 eMBRT 和 xMBRT 相比,pMBRT 在其射程末端(75mm 时为 7%,10mm 时为 3%)导致簇状单链断裂和双链断裂的比例显著增加。在后两种情况下,复杂断裂的比例保持不变,与深度和区域(峰值或谷值)无关。

结论

可以预期这三种 MBRT 技术能够更好地保护正常组织。在这三种模式中,pMBRT 为耐辐射肿瘤提供了额外的增益,因为它在肿瘤区域产生了更多的复杂 DNA 损伤簇。这些结果可以帮助理解 MBRT 的生物学机制。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验