Chow James C L
Radiation Medicine Program, Princess Margaret Cancer Centre, University Health Network, Toronto, ON M5G 1X6, Canada.
Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada.
Nanomaterials (Basel). 2025 Jan 15;15(2):117. doi: 10.3390/nano15020117.
Monte Carlo (MC) simulations have become important in advancing nanoparticle (NP)-based applications for cancer imaging and therapy. This review explores the critical role of MC simulations in modeling complex biological interactions, optimizing NP designs, and enhancing the precision of therapeutic and diagnostic strategies. Key findings highlight the ability of MC simulations to predict NP bio-distribution, radiation dosimetry, and treatment efficacy, providing a robust framework for addressing the stochastic nature of biological systems. Despite their contributions, MC simulations face challenges such as modeling biological complexity, computational demands, and the scarcity of reliable nanoscale data. However, emerging technologies, including hybrid modeling approaches, high-performance computing, and quantum simulation, are poised to overcome these limitations. Furthermore, novel advancements such as FLASH radiotherapy, multifunctional NPs, and patient-specific data integration are expanding the capabilities and clinical relevance of MC simulations. This topical review underscores the transformative potential of MC simulations in bridging fundamental research and clinical translation. By facilitating personalized nanomedicine and streamlining regulatory and clinical trial processes, MC simulations offer a pathway toward more effective, tailored, and accessible cancer treatments. The continued evolution of simulation techniques, driven by interdisciplinary collaboration and technological innovation, ensures that MC simulations will remain at the forefront of nanomedicine's progress.
蒙特卡罗(MC)模拟在推进基于纳米颗粒(NP)的癌症成像与治疗应用方面已变得至关重要。本综述探讨了MC模拟在对复杂生物相互作用进行建模、优化NP设计以及提高治疗和诊断策略的精度方面的关键作用。主要发现突出了MC模拟预测NP生物分布、辐射剂量学和治疗效果的能力,为应对生物系统的随机性提供了一个强大的框架。尽管MC模拟做出了贡献,但它们面临着诸如对生物复杂性进行建模、计算需求以及可靠纳米级数据稀缺等挑战。然而,包括混合建模方法、高性能计算和量子模拟在内的新兴技术有望克服这些限制。此外,诸如FLASH放疗、多功能NP和患者特异性数据整合等新进展正在扩展MC模拟的能力和临床相关性。这篇专题综述强调了MC模拟在连接基础研究与临床转化方面的变革潜力。通过促进个性化纳米医学并简化监管和临床试验流程,MC模拟为实现更有效、量身定制且可及的癌症治疗提供了一条途径。由跨学科合作和技术创新推动的模拟技术的持续发展,确保了MC模拟将始终处于纳米医学进展的前沿。