Suppr超能文献

通过耦合稀疏张量分解融合高光谱和多光谱图像

Fusing Hyperspectral and Multispectral Images via Coupled Sparse Tensor Factorization.

作者信息

Li Shutao, Dian Renwei, Fang Leyuan, Bioucas-Dias Jose M

出版信息

IEEE Trans Image Process. 2018 May 15. doi: 10.1109/TIP.2018.2836307.

Abstract

Fusing a low spatial resolution hyperspectral image (LR-HSI) with a high spatial resolution multispectral image (HR-MSI) to obtain a high spatial resolution hyperspectral image (HR-HSI) has attracted increasing interest in recent years. In this paper, we propose a coupled sparse tensor factorization (CSTF) based approach for fusing such images. In the proposed CSTF method, we consider an HR-HSI as a three-dimensional tensor and redefine the fusion problem as the estimation of a core tensor and dictionaries of the three modes. The high spatial-spectral correlations in the HR-HSI are modeled by incorporating a regularizer which promotes sparse core tensors. The estimation of the dictionaries and the core tensor are formulated as a coupled tensor factorization of the LR-HSI and of the HR-MSI. Experiments on two remotely sensed HSIs demonstrate the superiority of the proposed CSTF algorithm over current state-of-the-art HSI-MSI fusion approaches.

摘要

近年来,将低空间分辨率高光谱图像(LR-HSI)与高空间分辨率多光谱图像(HR-MSI)融合以获得高空间分辨率高光谱图像(HR-HSI)引起了越来越多的关注。在本文中,我们提出了一种基于耦合稀疏张量分解(CSTF)的方法来融合此类图像。在所提出的CSTF方法中,我们将HR-HSI视为三维张量,并将融合问题重新定义为核心张量和三种模式字典的估计。通过引入促进稀疏核心张量的正则化项,对HR-HSI中的高空间光谱相关性进行建模。字典和核心张量的估计被表述为LR-HSI和HR-MSI的耦合张量分解。在两个遥感高光谱图像上的实验证明了所提出的CSTF算法优于当前最先进的高光谱图像-多光谱图像融合方法。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验