Suppr超能文献

热触发的 CRISPR-dCas9 远程控制用于可调转录调控。

Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation.

机构信息

The Wallace H. Coulter Department of Biomedical Engineering , Georgia Institute of Technology and Emory University , Atlanta , Georgia 30332 , United States.

Institute for Electronics and Nanotechnology , Georgia Institute of Technology , Atlanta , Georgia 30332 , United States.

出版信息

ACS Chem Biol. 2020 Feb 21;15(2):533-542. doi: 10.1021/acschembio.9b01005. Epub 2020 Jan 13.

Abstract

CRISPR-associated proteins (Cas) are enabling powerful new approaches to control mammalian cell functions, yet the lack of spatially defined, noninvasive modalities limits their use as biological tools. Here, we integrate thermal gene switches with dCas9 complexes to confer remote control of gene activation and suppression with short pulses of heat. Using a thermal switch constructed from the heat shock protein A6 (HSPA6) locus, we show that a single heat pulse 3-5 °C above basal temperature is sufficient to trigger expression of dCas9 complexes. We demonstrate that dCas9 fused to the transcriptional activator VP64 is functional after heat activation, and, depending on the number of heat pulses, drives transcription of endogenous genes and to levels equivalent to that achieved by a constitutive viral promoter. Across a range of input temperatures, we find that downstream protein expression of closely correlates with transcript levels ( = 0.99). Using dCas9 fused with the transcriptional suppressor KRAB, we show that longitudinal suppression of the reporter d2GFP depends on key thermal input parameters including pulse magnitude, number of pulses, and dose fractionation. In living mice, we extend our study using photothermal heating to spatially target implanted cells to suppress d2GFP . Our study establishes a noninvasive and targeted approach to harness Cas-based proteins for modulation of gene expression to complement current methods for remote control of cell function.

摘要

CRISPR 相关蛋白(Cas)为控制哺乳动物细胞功能提供了强大的新方法,但缺乏空间定义的、非侵入性的方式限制了它们作为生物工具的使用。在这里,我们将热基因开关与 dCas9 复合物结合,用短脉冲的热来赋予基因激活和抑制的远程控制。使用来自热休克蛋白 A6(HSPA6)基因座的热开关,我们表明,高于基础温度 3-5°C 的单个热脉冲足以触发 dCas9 复合物的表达。我们证明,与转录激活剂 VP64 融合的 dCas9 在热激活后是有功能的,并且根据热脉冲的数量,将内源性基因的转录驱动到与组成性病毒启动子相当的水平。在一系列输入温度下,我们发现下游蛋白表达与转录水平密切相关(=0.99)。使用与转录抑制剂 KRAB 融合的 dCas9,我们表明报告基因 d2GFP 的纵向抑制取决于关键的热输入参数,包括脉冲幅度、脉冲数量和剂量分割。在活体小鼠中,我们使用光热加热来扩展我们的研究,以空间靶向植入细胞来抑制 d2GFP。我们的研究建立了一种非侵入性和靶向的方法,利用 Cas 蛋白来调节基因表达,以补充当前用于远程控制细胞功能的方法。

相似文献

1
Heat-Triggered Remote Control of CRISPR-dCas9 for Tunable Transcriptional Modulation.
ACS Chem Biol. 2020 Feb 21;15(2):533-542. doi: 10.1021/acschembio.9b01005. Epub 2020 Jan 13.
2
An efficient KRAB domain for CRISPRi applications in human cells.
Nat Methods. 2020 Nov;17(11):1093-1096. doi: 10.1038/s41592-020-0966-x. Epub 2020 Oct 5.
3
Remote Control of Mammalian Cells with Heat-Triggered Gene Switches and Photothermal Pulse Trains.
ACS Synth Biol. 2018 Apr 20;7(4):1167-1173. doi: 10.1021/acssynbio.7b00455. Epub 2018 Apr 10.
4
Chemical Control of a CRISPR-Cas9 Acetyltransferase.
ACS Chem Biol. 2018 Feb 16;13(2):455-460. doi: 10.1021/acschembio.7b00883. Epub 2018 Jan 17.
5
Programmable activation of Bombyx gene expression using CRISPR/dCas9 fusion systems.
Insect Sci. 2019 Dec;26(6):983-990. doi: 10.1111/1744-7917.12634. Epub 2018 Sep 25.
6
Robust Transcriptional Activation in Plants Using Multiplexed CRISPR-Act2.0 and mTALE-Act Systems.
Mol Plant. 2018 Feb 5;11(2):245-256. doi: 10.1016/j.molp.2017.11.010. Epub 2017 Nov 29.
8
Inducible and multiplex gene regulation using CRISPR-Cpf1-based transcription factors.
Nat Methods. 2017 Dec;14(12):1163-1166. doi: 10.1038/nmeth.4483. Epub 2017 Oct 30.
9
Synergistic Upregulation of Target Genes by TET1 and VP64 in the dCas9-SunTag Platform.
Int J Mol Sci. 2020 Feb 25;21(5):1574. doi: 10.3390/ijms21051574.
10
Comparative analysis of dCas9-VP64 variants and multiplexed guide RNAs mediating CRISPR activation.
PLoS One. 2022 Jun 28;17(6):e0270008. doi: 10.1371/journal.pone.0270008. eCollection 2022.

引用本文的文献

3
Ultrasound Control of Genomic Regulatory Toolboxes for Cancer Immunotherapy.
Nat Commun. 2024 Dec 1;15(1):10444. doi: 10.1038/s41467-024-54477-7.
4
Heat application in live cell imaging.
FEBS Open Bio. 2024 Dec;14(12):1940-1954. doi: 10.1002/2211-5463.13912. Epub 2024 Nov 3.
5
Regulation of CAR transgene expression to design semiautonomous CAR-T.
Mol Ther Oncol. 2024 Jun 14;32(3):200833. doi: 10.1016/j.omton.2024.200833. eCollection 2024 Sep 19.
6
In vivo gene delivery to immune cells.
Curr Opin Biotechnol. 2024 Aug;88:103169. doi: 10.1016/j.copbio.2024.103169. Epub 2024 Jul 6.
8
Sonogenetic control of multiplexed genome regulation and base editing.
Nat Commun. 2023 Oct 18;14(1):6575. doi: 10.1038/s41467-023-42249-8.
10
CRISPR/Cas9 ribonucleoprotein-mediated genome and epigenome editing in mammalian cells.
Adv Drug Deliv Rev. 2022 Feb;181:114087. doi: 10.1016/j.addr.2021.114087. Epub 2021 Dec 20.

本文引用的文献

2
Chromatin conformation remains stable upon extensive transcriptional changes driven by heat shock.
Proc Natl Acad Sci U S A. 2019 Sep 24;116(39):19431-19439. doi: 10.1073/pnas.1901244116. Epub 2019 Sep 10.
3
Supercharging adoptive T cell therapy to overcome solid tumor-induced immunosuppression.
Sci Transl Med. 2019 Jun 5;11(495). doi: 10.1126/scitranslmed.aaw2293.
4
The next generation of CRISPR-Cas technologies and applications.
Nat Rev Mol Cell Biol. 2019 Aug;20(8):490-507. doi: 10.1038/s41580-019-0131-5.
5
Recent trends in CRISPR-Cas system: genome, epigenome, and transcriptome editing and CRISPR delivery systems.
Genes Genomics. 2019 Aug;41(8):871-877. doi: 10.1007/s13258-019-00830-w. Epub 2019 May 22.
6
Spatial control of in vivo CRISPR-Cas9 genome editing via nanomagnets.
Nat Biomed Eng. 2019 Feb;3(2):126-136. doi: 10.1038/s41551-018-0318-7. Epub 2018 Nov 12.
7
Biologically Targeted Magnetic Hyperthermia: Potential and Limitations.
Front Pharmacol. 2018 Aug 2;9:831. doi: 10.3389/fphar.2018.00831. eCollection 2018.
9
Synthetic far-red light-mediated CRISPR-dCas9 device for inducing functional neuronal differentiation.
Proc Natl Acad Sci U S A. 2018 Jul 17;115(29):E6722-E6730. doi: 10.1073/pnas.1802448115. Epub 2018 Jul 2.
10
The CRISPR tool kit for genome editing and beyond.
Nat Commun. 2018 May 15;9(1):1911. doi: 10.1038/s41467-018-04252-2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验