Bian Tian, Deng Yong
Institute of Fundamental and Frontier Science, University of Electronic Science and Technology of China, Chengdu 610054, China.
Chaos. 2018 Apr;28(4):043109. doi: 10.1063/1.5030894.
In the field of complex networks, how to identify influential nodes is a significant issue in analyzing the structure of a network. In the existing method proposed to identify influential nodes based on the local dimension, the global structure information in complex networks is not taken into consideration. In this paper, a node information dimension is proposed by synthesizing the local dimensions at different topological distance scales. A case study of the Netscience network is used to illustrate the efficiency and practicability of the proposed method.
在复杂网络领域,如何识别有影响力的节点是分析网络结构中的一个重要问题。在现有的基于局部维度识别有影响力节点的方法中,没有考虑复杂网络中的全局结构信息。本文通过综合不同拓扑距离尺度下的局部维度,提出了一种节点信息维度。以Netscience网络为例,说明了所提方法的有效性和实用性。