Program for Computational and Systems Biology, Memorial Sloan-Kettering Cancer Center, New York, NY, USA.
Department of Civil, Structural and Environmental Engineering, University at Buffalo, Buffalo, NY, 14260, USA.
BMC Ecol. 2020 Jan 8;20(1):3. doi: 10.1186/s12898-019-0272-6.
Accurate network models of species interaction could be used to predict population dynamics and be applied to manage real world ecosystems. Most relevant models are nonlinear, however, and data available from real world ecosystems are too noisy and sparsely sampled for common inference approaches. Here we improved the inference of generalized Lotka-Volterra (gLV) ecological networks by using a new optimization algorithm to constrain parameter signs with prior knowledge and a perturbation-based ensemble method.
We applied the new inference to long-term species abundance data from the freshwater fish community in the Illinois River, United States. We constructed an ensemble of 668 gLV models that explained 79% of the data on average. The models indicated (at a 70% level of confidence) a strong positive interaction from emerald shiner (Notropis atherinoides) to channel catfish (Ictalurus punctatus), which we could validate using data from a nearby observation site, and predicted that the relative abundances of most fish species will continue to fluctuate temporally and concordantly in the near future. The network shows that the invasive silver carp (Hypophthalmichthys molitrix) has much stronger impacts on native predators than on prey, supporting the notion that the invader perturbs the native food chain by replacing the diets of predators.
Ensemble approaches constrained by prior knowledge can improve inference and produce networks from noisy and sparsely sampled time series data to fill knowledge gaps on real world ecosystems. Such network models could aid efforts to conserve ecosystems such as the Illinois River, which is threatened by the invasion of the silver carp.
准确的物种相互作用网络模型可用于预测种群动态,并应用于管理真实生态系统。然而,大多数相关模型是非线性的,并且来自真实生态系统的数据由于噪声大且采样稀疏,不适合常用的推断方法。在这里,我们使用新的优化算法来约束参数符号,并结合基于扰动的集合方法,改进了广义 Lotka-Volterra(gLV)生态网络的推断。
我们将新的推断方法应用于美国伊利诺伊河淡水鱼类群落的长期物种丰度数据。我们构建了一个由 668 个 gLV 模型组成的集合,平均解释了 79%的数据。这些模型表明(置信度为 70%),翡翠鱼(Notropis atherinoides)与斑点叉尾鮰(Ictalurus punctatus)之间存在强烈的正相互作用,我们可以通过附近观测点的数据来验证这一点,并预测大多数鱼类的相对丰度将在不久的将来继续在时间上波动并协调。该网络表明,入侵的银鲤鱼(Hypophthalmichthys molitrix)对本地捕食者的影响远大于对猎物的影响,这支持了入侵物种通过取代捕食者的饮食来扰乱本地食物链的观点。
受先验知识约束的集合方法可以提高推断能力,并从噪声大且稀疏采样的时间序列数据中生成网络,以填补真实生态系统的知识空白。这种网络模型可以帮助保护伊利诺伊河等生态系统,因为这些生态系统受到银鲤鱼入侵的威胁。