Witzel Katja, Abu Risha Marua, Albers Philip, Börnke Frederik, Hanschen Franziska S
Leibniz Institute of Vegetable and Ornamental Crops, Großbeeren, Germany.
Institute of Biochemistry and Biology, University of Potsdam, Potsdam, Germany.
Front Plant Sci. 2019 Dec 19;10:1552. doi: 10.3389/fpls.2019.01552. eCollection 2019.
Glucosinolates present in play a major role in herbivory defense. Upon tissue disruption, glucosinolates come into contact with myrosinase, which initiates their breakdown to biologically active compounds. Among these, the formation of epithionitriles is triggered by the presence of epithiospecifier protein (ESP) and a terminal double bond in the glucosinolate side chain. One gene is characterized in the model plant (AtESP; At1g54040.2). However, species underwent genome triplication since their divergence from the lineage. This indicates the presence of multiple ESP isoforms in crops that are currently poorly characterized. We identified three ESPs, specifically (LOC106296341), (LOC106306810), and (LOC106325105) based on genome analysis. Transcript and protein abundance were assessed in shoots and roots of four vegetables, namely broccoli, kohlrabi, white, and red cabbage, because these genotypes showed a differential pattern for the formation of glucosinolate hydrolysis products as well for their ESP activity. BoESP1 and BoESP2 were expressed mainly in shoots, while BoESP3 was abundant in roots. Biochemical characterization of heterologous expressed BoESP isoforms revealed different substrate specificities towards seven glucosinolates: all isoforms showed epithiospecifier activity on alkenyl glucosinolates, but not on non-alkenyl glucosinolates. The pH-value differently affected BoESP activity: while BoESP1 and BoESP2 activities were optimal at pH 6-7, BoESP3 activity remained relatively stable from pH 4 to 7. In order test their potential for the modification of glucosinolate breakdown, the three isoforms were expressed in Hi-0, which lacks AtESP expression, and analyzed for the effect on their respective hydrolysis products. The BoESPs altered the hydrolysis of allyl glucosinolate in the transformants to release 1-cyano-2,3-epithiopropane and reduced formation of the corresponding 3-butenenitrile and allyl isothiocyanate. Plants expressing BoESP2 showed the highest percentage of released epithionitriles. Given these results, we propose a model for isoform-specific roles of ESPs in glucosinolate breakdown.
存在于[植物名称未给出]中的硫代葡萄糖苷在食草动物防御中起主要作用。组织受损时,硫代葡萄糖苷与黑芥子酶接触,后者启动其分解为生物活性化合物的过程。其中,硫代葡萄糖苷侧链中存在硫代特异性蛋白(ESP)和末端双键会引发环硫腈的形成。在模式植物[植物名称未给出](AtESP;At1g54040.2)中已对一个[基因名称未给出]基因进行了表征。然而,[植物名称未给出]物种自与[植物名称未给出]谱系分化以来经历了基因组三倍化。这表明在目前表征不佳的[植物名称未给出]作物中存在多种ESP同工型。基于[植物名称未给出]基因组分析,我们鉴定出了三种[植物名称未给出]ESP,分别为[具体名称未给出](LOC106296341)、[具体名称未给出](LOC106306810)和[具体名称未给出](LOC106325105)。对四种[植物名称未给出]蔬菜(即西兰花、球茎甘蓝、白菜和紫甘蓝)的地上部和根部的转录本和蛋白质丰度进行了评估,因为这些基因型在硫代葡萄糖苷水解产物的形成及其ESP活性方面表现出不同的模式。BoESP1和BoESP2主要在地上部表达,而BoESP3在根部含量丰富。对异源表达的BoESP同工型的生化特性分析揭示了它们对七种硫代葡萄糖苷具有不同的底物特异性:所有同工型对烯基硫代葡萄糖苷均表现出硫代特异性活性,但对非烯基硫代葡萄糖苷则无此活性。pH值对BoESP活性的影响不同:BoESP1和BoESP2的活性在pH 6 - 7时最佳,而BoESP3的活性在pH 4至7之间保持相对稳定。为了测试它们对硫代葡萄糖苷分解进行修饰的潜力,将这三种同工型在缺乏AtESP表达的[植物名称未给出]Hi - 0中进行表达,并分析其对各自水解产物的影响。BoESPs改变了[植物名称未给出]转化体中烯丙基硫代葡萄糖苷的水解,释放出1 - 氰基 - 2,3 - 环硫丙烷,并减少了相应的3 - 丁烯腈和烯丙基异硫氰酸酯的形成。表达BoESP2的植物释放的环硫腈百分比最高。基于这些结果,我们提出了一个关于[植物名称未给出]ESP同工型在硫代葡萄糖苷分解中特定作用的模型。