Suppr超能文献

利用概率矩阵分解识别潜在的微小RNA与疾病的关联

Identifying Potential miRNAs-Disease Associations With Probability Matrix Factorization.

作者信息

Xu Junlin, Cai Lijun, Liao Bo, Zhu Wen, Wang Peng, Meng Yajie, Lang Jidong, Tian Geng, Yang Jialiang

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.

School of Mathematics and Statistics, Hainan Normal University, Haikou, China.

出版信息

Front Genet. 2019 Dec 11;10:1234. doi: 10.3389/fgene.2019.01234. eCollection 2019.

Abstract

In recent years, miRNAs have been verified to play an irreplaceable role in biological processes associated with human disease. Discovering potential disease-related miRNAs helps explain the underlying pathogenesis of the disease at the molecular level. Given the high cost and labor intensity of biological experiments, computational predictions will be an indispensable alternative. Therefore, we design a new model called probability matrix factorization (PMFMDA). Specifically, we first integrate miRNA and disease similarity. Next, the known association matrix and integrated similarity matrix are utilized to construct a probability matrix factorization algorithm to identify potentially relevant miRNAs for disease. We find that PMFMDA achieves reliable performance in the frameworks of global leave-one-out cross validation (LOOCV) and 5-fold cross validation (AUCs are 0.9237 and 0.9187, respectively) in the HMDD (V2.0) dataset, significantly outperforming a few state-of-the-art methods including CMFMDA, IMCMDA, NCPMDA, RLSMDA, and RWRMDA. In addition, case studies show that PMFMDA has good predictive performance for new associations, and the evidence can be identified by literature mining.

摘要

近年来,已证实miRNA在与人类疾病相关的生物学过程中发挥着不可替代的作用。发现潜在的疾病相关miRNA有助于在分子水平上解释疾病的潜在发病机制。鉴于生物实验成本高且劳动强度大,计算预测将是不可或缺的替代方法。因此,我们设计了一种名为概率矩阵分解(PMFMDA)的新模型。具体而言,我们首先整合miRNA与疾病的相似性。接下来,利用已知的关联矩阵和整合后的相似性矩阵构建概率矩阵分解算法,以识别与疾病潜在相关的miRNA。我们发现,在HMDD(V2.0)数据集中,PMFMDA在全局留一法交叉验证(LOOCV)和5折交叉验证框架下均取得了可靠的性能(AUC分别为0.9237和0.9187),显著优于包括CMFMDA、IMCMDA、NCPMDA、RLSMDA和RWRMDA在内的一些现有先进方法。此外,案例研究表明,PMFMDA对新关联具有良好的预测性能,且证据可通过文献挖掘来识别。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/07ed/6918542/7725240aab82/fgene-10-01234-g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验