DAE-CFR:使用深度自动编码器和组合特征表示来检测 microRNA-疾病关联。

DAE-CFR: detecting microRNA-disease associations using deep autoencoder and combined feature representation.

机构信息

Department of Health Statistics, School of Public Health, Shanxi Medical University, Taiyuan, China.

Department of Mathematics, Changzhi Medical College, Changzhi, China.

出版信息

BMC Bioinformatics. 2024 Mar 29;25(1):139. doi: 10.1186/s12859-024-05757-y.

Abstract

BACKGROUND

MicroRNA (miRNA) has been shown to play a key role in the occurrence and progression of diseases, making uncovering miRNA-disease associations vital for disease prevention and therapy. However, traditional laboratory methods for detecting these associations are slow, strenuous, expensive, and uncertain. Although numerous advanced algorithms have emerged, it is still a challenge to develop more effective methods to explore underlying miRNA-disease associations.

RESULTS

In the study, we designed a novel approach on the basis of deep autoencoder and combined feature representation (DAE-CFR) to predict possible miRNA-disease associations. We began by creating integrated similarity matrices of miRNAs and diseases, performing a logistic function transformation, balancing positive and negative samples with k-means clustering, and constructing training samples. Then, deep autoencoder was used to extract low-dimensional feature from two kinds of feature representations for miRNAs and diseases, namely, original association information-based and similarity information-based. Next, we combined the resulting features for each miRNA-disease pair and used a logistic regression (LR) classifier to infer all unknown miRNA-disease interactions. Under five and tenfold cross-validation (CV) frameworks, DAE-CFR not only outperformed six popular algorithms and nine classifiers, but also demonstrated superior performance on an additional dataset. Furthermore, case studies on three diseases (myocardial infarction, hypertension and stroke) confirmed the validity of DAE-CFR in practice.

CONCLUSIONS

DAE-CFR achieved outstanding performance in predicting miRNA-disease associations and can provide evidence to inform biological experiments and clinical therapy.

摘要

背景

MicroRNA (miRNA) 在疾病的发生和发展中起着关键作用,因此揭示 miRNA 与疾病的关联对于疾病的预防和治疗至关重要。然而,传统的实验室方法检测这些关联既缓慢又费力,成本高昂且结果不确定。尽管已经出现了许多先进的算法,但开发更有效的方法来探索潜在的 miRNA 与疾病的关联仍然是一个挑战。

结果

在研究中,我们设计了一种新的方法,基于深度自动编码器和组合特征表示(DAE-CFR)来预测可能的 miRNA 与疾病的关联。我们首先创建 miRNA 和疾病的综合相似性矩阵,进行逻辑函数转换,使用 k-means 聚类平衡正负样本,并构建训练样本。然后,深度自动编码器用于从 miRNA 和疾病的两种特征表示中提取低维特征,即基于原始关联信息和基于相似性信息。接下来,我们对每个 miRNA-疾病对的特征进行组合,并使用逻辑回归(LR)分类器来推断所有未知的 miRNA-疾病相互作用。在五折和十折交叉验证(CV)框架下,DAE-CFR 不仅优于六种流行的算法和九种分类器,而且在另一个数据集上也表现出了优越的性能。此外,对三种疾病(心肌梗死、高血压和中风)的案例研究证实了 DAE-CFR 在实践中的有效性。

结论

DAE-CFR 在预测 miRNA 与疾病的关联方面表现出色,可为生物学实验和临床治疗提供依据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/947e/10981315/32a4310bdc8b/12859_2024_5757_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索