Suppr超能文献

分子机制与机械机制在分枝杆菌细胞分裂中的重叠及关键作用

Overlapping and essential roles for molecular and mechanical mechanisms in mycobacterial cell division.

作者信息

Odermatt Pascal D, Hannebelle Mélanie T M, Eskandarian Haig A, Nievergelt Adrian P, McKinney John D, Fantner Georg E

机构信息

Laboratory for Bio- and Nano-Instrumentation, School of Engineering, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland.

Laboratory of Microbiology and Microtechnology, School of Life Sciences, Swiss Federal Institute of Technology in Lausanne (EPFL), Switzerland.

出版信息

Nat Phys. 2020 Jan;16(1):57-62. doi: 10.1038/s41567-019-0679-1. Epub 2019 Oct 21.

Abstract

Mechanisms to control cell division are essential for cell proliferation and survival . Bacterial cell growth and division require the coordinated activity of peptidoglycan synthases and hydrolytic enzymes to maintain mechanical integrity of the cell wall . Recent studies suggest that cell separation is governed by mechanical forces . How mechanical forces interact with molecular mechanisms to control bacterial cell division in space and time is poorly understood. Here, we use a combination of atomic force microscope (AFM) imaging, nanomechanical mapping, and nanomanipulation to show that enzymatic activity and mechanical forces serve overlapping and essential roles in mycobacterial cell division. We find that mechanical stress gradually accumulates in the cell wall concentrated at the future division site, culminating in rapid (millisecond) cleavage of nascent sibling cells. Inhibiting cell wall hydrolysis delays cleavage; conversely, locally increasing cell wall stress causes instantaneous and premature cleavage. Cells deficient in peptidoglycan hydrolytic activity fail to locally decrease their cell wall strength and undergo natural cleavage, instead forming chains of non-growing cells. Cleavage of these cells can be mechanically induced by local application of stress with AFM. These findings establish a direct link between actively controlled molecular mechanisms and passively controlled mechanical forces in bacterial cell division.

摘要

控制细胞分裂的机制对于细胞增殖和存活至关重要。细菌细胞的生长和分裂需要肽聚糖合成酶和水解酶的协同作用,以维持细胞壁的机械完整性。最近的研究表明,细胞分离受机械力支配。目前对于机械力如何与分子机制相互作用以在空间和时间上控制细菌细胞分裂的了解还很少。在这里,我们结合使用原子力显微镜(AFM)成像、纳米力学测绘和纳米操作,以表明酶活性和机械力在分枝杆菌细胞分裂中发挥着重叠且至关重要的作用。我们发现,机械应力在集中于未来分裂位点的细胞壁中逐渐积累,最终导致新生子代细胞快速(毫秒级)分裂。抑制细胞壁水解会延迟分裂;相反,局部增加细胞壁应力会导致瞬时和过早分裂。缺乏肽聚糖水解活性的细胞无法局部降低其细胞壁强度并进行自然分裂,而是形成不生长细胞的链。这些细胞的分裂可以通过用AFM局部施加应力来机械诱导。这些发现建立了细菌细胞分裂中主动控制的分子机制与被动控制的机械力之间的直接联系。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/357e/6952280/437054ba925d/EMS84305-f005.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验