Pizzi Andrea, Rosolen Gilles, Wong Liang Jie, Ischebeck Rasmus, Soljačić Marin, Feurer Thomas, Kaminer Ido
Cavendish Laboratory University of Cambridge Cambridge CB3 0HE UK.
Micro and Nanophotonic Materials Group Research Institute for Materials Science and Engineering University of Mons Place du Parc 20 7000 Mons Belgium.
Adv Sci (Weinh). 2019 Oct 2;7(1):1901609. doi: 10.1002/advs.201901609. eCollection 2020 Jan.
The interaction of electrons with strong electromagnetic fields is fundamental to the ability to design high-quality radiation sources. At the core of all such sources is a tradeoff between compactness and higher output radiation intensities. Conventional photonic devices are limited in size by their operating wavelength, which helps compactness at the cost of a small interaction area. Here, plasmonic modes supported by multilayer graphene metamaterials are shown to provide a larger interaction area with the electron beam, while also tapping into the extreme confinement of graphene plasmons to generate high-frequency photons with relatively low-energy electrons available from tabletop sources. For 5 MeV electrons, a metamaterial of 50 layers and length 50 µm, and a beam current of 1.7 µA, it is, for instance, possible to generate X-rays of intensity 1.5 × 10 photons sr s 1%BW, 580 times more than for a single-layer design. The frequency of the driving laser dynamically tunes the photon emission spectrum. This work demonstrates a unique free-electron light source, wherein the electron mean free path in a given material is longer than the device length, relaxing the requirements of complex electron beam systems and potentially paving the way to high-yield, compact, and tunable X-ray sources.
电子与强电磁场的相互作用是设计高质量辐射源能力的基础。所有此类源的核心在于紧凑性与更高输出辐射强度之间的权衡。传统光子器件的尺寸受其工作波长限制,这在以小相互作用面积为代价的情况下有助于实现紧凑性。在此,多层石墨烯超材料支持的表面等离激元模式被证明可提供与电子束更大的相互作用面积,同时还利用石墨烯表面等离激元的极端局域性,用桌面源提供的相对低能量电子产生高频光子。例如,对于能量为5兆电子伏的电子、50层且长度为50微米的超材料以及1.7微安的束流,有可能产生强度为1.5×10光子·球面度⁻¹·秒⁻¹·0.01%带宽的X射线,比单层设计高出580倍。驱动激光的频率可动态调节光子发射光谱。这项工作展示了一种独特的自由电子光源,其中电子在给定材料中的平均自由程长于器件长度,放宽了对复杂电子束系统的要求,并有可能为高产量、紧凑且可调谐的X射线源铺平道路。