Bovone Giovanni, Steiner Fabian, Guzzi Elia A, Tibbitt Mark W
Macromolecular Engineering Laboratory, Department of Mechanical and Process Engineering, ETH Zürich, Zurich, Switzerland.
Front Bioeng Biotechnol. 2019 Dec 17;7:423. doi: 10.3389/fbioe.2019.00423. eCollection 2019.
Polymeric nanoparticles (NPs) are increasingly used as therapeutics, diagnostics, and building blocks in (bio)materials science. Current barriers to translation are limited control over NP physicochemical properties and robust scale-up of their production. Flow-based devices have emerged for controlled production of polymeric NPs, both for rapid formulation screening (μg min) and on-scale production (mg min). While flow-based devices have improved NP production compared to traditional batch processes, automated processes are desired for robust NP production at scale. Therefore, we engineered an automated coaxial jet mixer (CJM), which controlled the mixing of an organic stream containing block copolymer and an aqueous stream, for the continuous nanoprecipitation of polymeric NPs. The CJM was operated stably under computer control for up to 24 h and automated control over the flow conditions tuned poly(ethylene glycol)--polylactide (PEG --PLA ) NP size between ≈56 nm and ≈79 nm. In addition, the automated CJM enabled production of NPs of similar size ( ≈ 50 nm) from chemically diverse block copolymers, PEG --PLA , PEG--poly(lactide--glycolide) (PEG --PLGA ), and PEG--polycaprolactone (PEG --PCL ), by tuning the flow conditions for each block copolymer. Further, the automated CJM was used to produce model nanotherapeutics in a reproducible manner without user intervention. Finally, NPs produced with the automated CJM were used to scale the formation of injectable polymer-nanoparticle (PNP) hydrogels, without modifying the mechanical properties of the PNP gel. In conclusion, the automated CJM enabled stable, tunable, and continuous production of polymeric NPs, which are needed for the scale-up and translation of this important class of biomaterials.
聚合物纳米颗粒(NPs)在(生物)材料科学中越来越多地用作治疗剂、诊断剂和构建材料。目前转化过程中的障碍在于对NP物理化学性质的控制有限以及其生产的稳健放大。基于流动的装置已出现用于聚合物NP的可控生产,既用于快速配方筛选(约μg/分钟),也用于大规模生产(约mg/分钟)。虽然与传统的间歇过程相比,基于流动的装置改善了NP的生产,但大规模稳健生产NP需要自动化过程。因此,我们设计了一种自动同轴喷射混合器(CJM),它控制含有嵌段共聚物的有机流和水流的混合,用于聚合物NP的连续纳米沉淀。CJM在计算机控制下稳定运行长达24小时,对流动条件的自动控制将聚(乙二醇)-聚丙交酯(PEG-PLA)NP尺寸调节在约56nm至约79nm之间。此外,通过调节每种嵌段共聚物的流动条件,自动CJM能够从化学性质不同的嵌段共聚物,即PEG-PLA、PEG-聚(丙交酯-乙交酯)(PEG-PLGA)和PEG-聚己内酯(PEG-PCL)生产尺寸相似(约50nm)的NP。此外,自动CJM用于以可重复的方式生产模型纳米治疗剂,无需用户干预。最后,用自动CJM生产的NP用于扩大可注射聚合物-纳米颗粒(PNP)水凝胶的形成,而不改变PNP凝胶的机械性能。总之,自动CJM能够稳定、可调且连续地生产聚合物NP,这是扩大这类重要生物材料的规模并将其转化所必需的。