Department of Zoology, National Museum of Nature and Science, Ibaraki, Japan.
Graduate School of Human and Environmental Studies, Kyoto University, Kyoto, Japan.
Genome Biol Evol. 2020 Feb 1;12(2):3926-3937. doi: 10.1093/gbe/evaa001.
Loss of photosynthesis is a recurring theme in eukaryotic evolution. In organisms that have lost the ability to photosynthesize, nonphotosynthetic plastids are retained because they play essential roles in processes other than photosynthesis. The unicellular algal genus Cryptomonas contains both photosynthetic and nonphotosynthetic members, the latter having lost the ability to photosynthesize on at least three separate occasions. To elucidate the evolutionary processes underlying the loss of photosynthesis, we sequenced the plastid genomes of two nonphotosynthetic strains, Cryptomonas sp. CCAC1634B and SAG977-2f, as well as the genome of the phototroph Cryptomonas curvata CCAP979/52. These three genome sequences were compared with the previously sequenced plastid genome of the nonphotosynthetic species Cryptomonas paramecium CCAP977/2a as well as photosynthetic members of the Cryptomonadales, including C. curvata FBCC300012D. Intraspecies comparison between the two C. curvata strains showed that although their genome structures are stable, the substitution rates of their genes are relatively high. Although most photosynthesis-related genes, such as the psa and psb gene families, were found to have disappeared from the nonphotosynthetic strains, at least ten pseudogenes are retained in SAG977-2f. Although gene order is roughly shared among the plastid genomes of photosynthetic Cryptomonadales, genome rearrangements are seen more frequently in the smaller genomes of the nonphotosynthetic strains. Intriguingly, the light-independent protochlorophyllide reductase comprising chlB, L, and N is retained in nonphotosynthetic SAG977-2f and CCAC1634B. On the other hand, whereas CCAP977/2a retains ribulose-1,5-bisphosphate carboxylase/oxygenase-related genes, including rbcL, rbcS, and cbbX, the plastid genomes of the other two nonphotosynthetic strains have lost the ribulose-1,5-bisphosphate carboxylase/oxygenase protein-coding genes.
光合作用的丧失是真核生物进化中的一个反复出现的主题。在失去光合作用能力的生物中,非光合作用质体被保留下来,因为它们在光合作用以外的过程中发挥着重要作用。单细胞藻类属Cryptomonas 既包含光合作用成员,也包含非光合作用成员,后者至少在三次独立的场合失去了光合作用能力。为了阐明光合作用丧失的进化过程,我们对两个非光合作用菌株Cryptomonas sp. CCAC1634B 和 SAG977-2f 以及光养Cryptomonas curvata CCAP979/52 的质体基因组进行了测序,同时还对非光合作用物种 Cryptomonas paramecium CCAP977/2a 的先前测序质体基因组以及 Cryptomonadales 的光合作用成员进行了测序,包括 C. curvata FBCC300012D。这三个基因组序列与非光合作用物种 C. curvata CCAP977/2a 的先前测序质体基因组以及 Cryptomonadales 的光合作用成员进行了比较,包括 C. curvata FBCC300012D。两个 C. curvata 菌株之间的种内比较表明,尽管它们的基因组结构稳定,但它们的基因替换率相对较高。尽管非光合作用菌株中发现大多数与光合作用相关的基因,如 psa 和 psb 基因家族,已经消失,但至少有十个假基因保留在 SAG977-2f 中。尽管光合作用 Cryptomonadales 的质体基因组中的基因顺序大致相同,但在非光合作用菌株的较小基因组中更频繁地发生基因组重排。有趣的是,非光合作用的 SAG977-2f 和 CCAC1634B 中保留了光独立原叶绿素还原酶,包括 chlB、L 和 N。另一方面,尽管 CCAP977/2a 保留了核酮糖-1,5-二磷酸羧化酶/加氧酶相关基因,包括 rbcL、rbcS 和 cbbX,但其他两个非光合作用菌株的质体基因组失去了核酮糖-1,5-二磷酸羧化酶/加氧酶蛋白编码基因。