Grosso Robson L, Muccillo Eliana N S, Muche Dereck N F, Jawaharram Gowtham S, Barr Christopher M, Monterrosa Anthony M, Castro Ricardo H R, Hattar Khalid, Dillon Shen J
Department of Materials Science and Engineering , University of Illinois Urbana-Champaign , Urbana , Illinois 61801 , United States.
Energy and Nuclear Research Institute - IPEN , P.O. Box, São Paulo 11049, Brazil.
Nano Lett. 2020 Feb 12;20(2):1041-1046. doi: 10.1021/acs.nanolett.9b04205. Epub 2020 Jan 16.
This work demonstrates a novel approach to ultrahigh-temperature mechanical testing using a combination of in situ nanomechanical testing and localized laser heating. The methodology is applied to characterizing and testing initially nanograined 10 mol % ScO-stabilized ZrO up to its melting temperature. The results suggest that the low-temperature strength of nanograined, < 50 nm, oxides is not influenced by creep. Tensile fracture of ZrO bicrystals produce a weak-temperature dependence suggesting that grain boundary energy dominates brittle fracture of grain boundaries even at high homologous temperatures; for example, = 2050 °C or ≈ 77% . The maximum temperature for mechanical testing in this work is primarily limited by the instability of the sample, due to evaporation or melting, enabling a host of new opportunities for testing materials in the ultrahigh-temperature regime.
这项工作展示了一种使用原位纳米力学测试和局部激光加热相结合的超高温机械测试新方法。该方法被应用于表征和测试初始为纳米晶的10 mol% ScO稳定的ZrO直至其熔化温度。结果表明,小于50 nm的纳米晶氧化物的低温强度不受蠕变影响。ZrO双晶体的拉伸断裂产生的温度依赖性较弱,这表明即使在高同源温度下,例如T = 2050 °C或T/Tm ≈ 77%时,晶界能也主导着晶界的脆性断裂。这项工作中机械测试的最高温度主要受样品因蒸发或熔化而产生的不稳定性限制,这为在超高温条件下测试材料带来了许多新机会。