Suppr超能文献

增益扫描在蛋白质微阵列分析中的应用。

Gain-Scanning for Protein Microarray Assays.

机构信息

Department of Microbiology, Boston University School of Medicine, 700 Albany Street, Boston, Massachusetts 02118, United States.

Department of Mathematics & Statistics, Boston University, Boston, Massachusetts 02118, United States.

出版信息

J Proteome Res. 2020 Jul 2;19(7):2664-2675. doi: 10.1021/acs.jproteome.9b00892. Epub 2020 Jan 23.

Abstract

Protein microarrays consist of known proteins spotted onto solid substrates and are used to perform highly multivariate assessments of protein-binding interactions. Human protein arrays are routinely applied to pathogen detection, immune response biomarker profiling, and antibody specificity profiling. Here, we describe and demonstrate a new data processing procedure, gain-scan, in which data were acquired under multiple photomultiplier tube (PMT) settings, followed by data fitting with a power function model to estimate the incident light signals of the array spots. Data acquisition under multiple PMT settings solves the difficulty of determining the single optimal PMT gain setting and allows us to maximize the detection of low-intensity signals while avoiding the saturation of high-intensity ones at the same time. The gain-scan data acquisition and fitting also significantly lower the variances over the detectable range of signals and improve the linear data normalization. The performance of the proposed procedure was verified by analyzing the profiling data of both the human polyclonal serum samples and the monoclonal antibody samples with both technical replicates and biological replicates. We showed that the multigain power function was an appropriate model for describing data acquired under multiple PMT settings. The gain-scan fitting alone or in combination with the linear normalization could effectively reduce the technical variability of the array data and lead to better sample separability and more sensitive differential analysis.

摘要

蛋白质微阵列由点样在固体基质上的已知蛋白质组成,用于对蛋白质结合相互作用进行高度多元评估。人类蛋白质阵列通常用于病原体检测、免疫反应生物标志物分析和抗体特异性分析。在这里,我们描述并展示了一种新的数据处理程序,增益扫描,其中在多个光电倍增管 (PMT) 设置下采集数据,然后用幂函数模型拟合数据,以估计阵列点的入射光信号。在多个 PMT 设置下采集数据解决了确定单个最佳 PMT 增益设置的困难,并允许我们在避免高强度信号饱和的同时最大化检测低强度信号。增益扫描数据采集和拟合还显著降低了信号可检测范围内的方差,并改善了线性数据归一化。通过分析具有技术重复和生物学重复的人类多克隆血清样本和单克隆抗体样本的分析数据,验证了所提出的程序的性能。我们表明,多增益幂函数是描述在多个 PMT 设置下采集的数据的合适模型。单独的增益扫描拟合或与线性归一化相结合可以有效降低阵列数据的技术变异性,从而提高样本可分离性和更敏感的差异分析。

相似文献

1
Gain-Scanning for Protein Microarray Assays.增益扫描在蛋白质微阵列分析中的应用。
J Proteome Res. 2020 Jul 2;19(7):2664-2675. doi: 10.1021/acs.jproteome.9b00892. Epub 2020 Jan 23.
5
Microarray scanner calibration curves: characteristics and implications.微阵列扫描仪校准曲线:特征与影响
BMC Bioinformatics. 2005 Jul 15;6 Suppl 2(Suppl 2):S11. doi: 10.1186/1471-2105-6-S2-S11.
9
Advances in the development of human protein microarrays.人类蛋白质微阵列的发展进展。
Expert Rev Proteomics. 2017 Jul;14(7):627-641. doi: 10.1080/14789450.2017.1347042.

本文引用的文献

10
Polyreactivity and autoreactivity among HIV-1 antibodies.HIV-1 抗体的多反应性和自身反应性。
J Virol. 2015 Jan;89(1):784-98. doi: 10.1128/JVI.02378-14. Epub 2014 Oct 29.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验