MacNab Ying C
School of Population and Public Health, University of British Columbia, Vancouver, British Columbia, Canada.
Stat Med. 2020 Dec 30;39(30):4767-4788. doi: 10.1002/sim.8752. Epub 2020 Sep 16.
This article concerns with conditionally formulated multivariate Gaussian Markov random fields (MGMRF) for modeling multivariate local dependencies with unknown dependence parameters subject to positivity constraint. In the context of Bayesian hierarchical modeling of lattice data in general and Bayesian disease mapping in particular, analytic and simulation studies provide new insights into various approaches to posterior estimation of dependence parameters under "hard" or "soft" positivity constraint, including the well-known strictly diagonal dominance criterion and options of hierarchical priors. Hierarchical centering is examined as a means to gain computational efficiency in Bayesian estimation of multivariate generalized linear mixed effects models in the presence of spatial confounding and weakly identified model parameters. Simulated data on irregular or regular lattice, and three datasets from the multivariate and spatiotemporal disease mapping literature, are used for illustration. The present investigation also sheds light on the use of deviance information criterion for model comparison, choice, and interpretation in the context of posterior risk predictions judged by borrowing-information and bias-precision tradeoff. The article concludes with a summary discussion and directions of future work. Potential applications of MGMRF in spatial information fusion and image analysis are briefly mentioned.
本文关注条件设定的多元高斯马尔可夫随机场(MGMRF),用于对具有未知依赖参数且受正性约束的多元局部依赖关系进行建模。在一般的格点数据贝叶斯分层建模,特别是贝叶斯疾病映射的背景下,分析和模拟研究为“硬”或“软”正性约束下依赖参数的后验估计的各种方法提供了新见解,包括著名的严格对角占优准则和分层先验选项。在存在空间混杂和弱识别模型参数的情况下,研究了分层中心化作为提高多元广义线性混合效应模型贝叶斯估计计算效率的一种手段。使用不规则或规则格点上的模拟数据以及多元和时空疾病映射文献中的三个数据集进行说明。本研究还揭示了在通过借信息和偏差 - 精度权衡判断的后验风险预测背景下,使用偏差信息准则进行模型比较、选择和解释的情况。文章最后进行了总结讨论并指出了未来工作的方向。简要提及了MGMRF在空间信息融合和图像分析中的潜在应用。