Suppr超能文献

纵向数据线性混合模型中的贝叶斯模型选择

Bayesian model selection in linear mixed models for longitudinal data.

作者信息

Ariyo Oludare, Quintero Adrian, Muñoz Johanna, Verbeke Geert, Lesaffre Emmanuel

机构信息

Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), KU Leuven, Leuven, Belgium.

Department of Statistics, Federal University of Agriculture, Abeokuta, Abeokuta, Nigeria.

出版信息

J Appl Stat. 2019 Aug 22;47(5):890-913. doi: 10.1080/02664763.2019.1657814. eCollection 2020.

Abstract

Linear mixed models (LMMs) are popular to analyze repeated measurements with a Gaussian response. For longitudinal studies, the LMMs consist of a fixed part expressing the effect of covariates on the mean evolution in time and a random part expressing the variation of the individual curves around the mean curve. Selecting the appropriate fixed and random effect parts is an important modeling exercise. In a Bayesian framework, there is little agreement on the appropriate selection criteria. This paper compares the performance of the deviance information criterion (DIC), the pseudo-Bayes factor and the widely applicable information criterion (WAIC) in LMMs, with an extension to LMMs with skew-normal distributions. We focus on the comparison between the conditional criteria (given random effects) versus the marginal criteria (averaged over random effects). In spite of theoretical arguments, there is not much enthusiasm among applied statisticians to make use of the marginal criteria. We show in an extensive simulation study that the three marginal criteria are superior in choosing the appropriate longitudinal model. In addition, the marginal criteria selected most appropriate model for growth curves of Nigerian chicken. A self-written R function can be combined with standard Bayesian software packages to obtain the marginal selection criteria.

摘要

线性混合模型(LMMs)常用于分析具有高斯响应的重复测量数据。对于纵向研究,LMMs由一个固定部分和一个随机部分组成,固定部分表示协变量对时间平均演变的影响,随机部分表示个体曲线围绕平均曲线的变化。选择合适的固定效应和随机效应部分是一项重要的建模工作。在贝叶斯框架下,对于合适的选择标准几乎没有一致的意见。本文比较了偏差信息准则(DIC)、伪贝叶斯因子和广泛适用信息准则(WAIC)在LMMs中的性能,并将其扩展到具有偏态正态分布的LMMs。我们重点比较了条件准则(给定随机效应)与边际准则(对随机效应求平均)。尽管有理论依据,但应用统计学家对使用边际准则的热情并不高。我们在一项广泛的模拟研究中表明,这三个边际准则在选择合适的纵向模型方面更具优势。此外,边际准则为尼日利亚鸡的生长曲线选择了最合适的模型。一个自编的R函数可以与标准的贝叶斯软件包结合使用,以获得边际选择标准。

相似文献

1
Bayesian model selection in linear mixed models for longitudinal data.
J Appl Stat. 2019 Aug 22;47(5):890-913. doi: 10.1080/02664763.2019.1657814. eCollection 2020.
2
Comparing DIC and WAIC for multilevel models with missing data.
Behav Res Methods. 2024 Apr;56(4):2731-2750. doi: 10.3758/s13428-023-02231-0. Epub 2023 Oct 20.
3
Bayesian model evidence as a practical alternative to deviance information criterion.
R Soc Open Sci. 2018 Mar 21;5(3):171519. doi: 10.1098/rsos.171519. eCollection 2018 Mar.
5
Bayesian Comparison of Latent Variable Models: Conditional Versus Marginal Likelihoods.
Psychometrika. 2019 Sep;84(3):802-829. doi: 10.1007/s11336-019-09679-0. Epub 2019 Jul 11.
6
Bayesian model selection for generalized linear mixed models.
Biometrics. 2023 Dec;79(4):3266-3278. doi: 10.1111/biom.13896. Epub 2023 Jun 27.
7
Modeling adaptive response profiles in a vaccine clinical trial.
BMC Med Res Methodol. 2020 Jul 16;20(1):191. doi: 10.1186/s12874-020-01070-3.
8
Bayesian Criterion Based Variable Selection.
J R Stat Soc Ser C Appl Stat. 2021 Aug;70(4):835-857. doi: 10.1111/rssc.12488. Epub 2021 Aug 7.
9
Comparing hierarchical models via the marginalized deviance information criterion.
Stat Med. 2018 Jul 20;37(16):2440-2454. doi: 10.1002/sim.7649. Epub 2018 Mar 26.
10
A Comparison of Monte Carlo Methods for Computing Marginal Likelihoods of Item Response Theory Models.
J Korean Stat Soc. 2019 Dec;48(4):503-512. doi: 10.1016/j.jkss.2019.04.001. Epub 2019 May 17.

引用本文的文献

1
Bayesian Criterion Based Variable Selection.
J R Stat Soc Ser C Appl Stat. 2021 Aug;70(4):835-857. doi: 10.1111/rssc.12488. Epub 2021 Aug 7.
2
Incorporating Covariates into Measures of Surrogate Paradox Risk.
Stats (Basel). 2023 Mar;6(1):322-344. doi: 10.3390/stats6010020. Epub 2023 Feb 17.

本文引用的文献

1
Comparing hierarchical models via the marginalized deviance information criterion.
Stat Med. 2018 Jul 20;37(16):2440-2454. doi: 10.1002/sim.7649. Epub 2018 Mar 26.
2
Multilevel covariance regression with correlated random effects in the mean and variance structure.
Biom J. 2017 Sep;59(5):1047-1066. doi: 10.1002/bimj.201600193. Epub 2017 Jul 10.
3
A multivariate multilevel Gaussian model with a mixed effects structure in the mean and covariance part.
Stat Med. 2014 May 20;33(11):1877-99. doi: 10.1002/sim.6062. Epub 2013 Dec 9.
5
Bayesian information criterion for longitudinal and clustered data.
Stat Med. 2011 Nov 10;30(25):3050-6. doi: 10.1002/sim.4323. Epub 2011 Jul 29.
6
Comparison of hierarchical Bayesian models for overdispersed count data using DIC and Bayes' factors.
Biometrics. 2009 Sep;65(3):962-9. doi: 10.1111/j.1541-0420.2008.01162.x. Epub 2009 Jan 23.
7
Bayesian covariance selection in generalized linear mixed models.
Biometrics. 2006 Jun;62(2):446-57. doi: 10.1111/j.1541-0420.2005.00499.x.
8
Random effects selection in linear mixed models.
Biometrics. 2003 Dec;59(4):762-9. doi: 10.1111/j.0006-341x.2003.00089.x.
9
Assessing the goodness-of-fit of the Laird and Ware model--an example: the Jimma Infant Survival Differential Longitudinal Study.
Stat Med. 1999 Apr 15;18(7):835-54. doi: 10.1002/(sici)1097-0258(19990415)18:7<835::aid-sim75>3.0.co;2-7.
10
Random-effects models for longitudinal data.
Biometrics. 1982 Dec;38(4):963-74.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验