Ariyo Oludare, Quintero Adrian, Muñoz Johanna, Verbeke Geert, Lesaffre Emmanuel
Leuven Biostatistics and Statistical Bioinformatics Centre (L-BioStat), KU Leuven, Leuven, Belgium.
Department of Statistics, Federal University of Agriculture, Abeokuta, Abeokuta, Nigeria.
J Appl Stat. 2019 Aug 22;47(5):890-913. doi: 10.1080/02664763.2019.1657814. eCollection 2020.
Linear mixed models (LMMs) are popular to analyze repeated measurements with a Gaussian response. For longitudinal studies, the LMMs consist of a fixed part expressing the effect of covariates on the mean evolution in time and a random part expressing the variation of the individual curves around the mean curve. Selecting the appropriate fixed and random effect parts is an important modeling exercise. In a Bayesian framework, there is little agreement on the appropriate selection criteria. This paper compares the performance of the deviance information criterion (DIC), the pseudo-Bayes factor and the widely applicable information criterion (WAIC) in LMMs, with an extension to LMMs with skew-normal distributions. We focus on the comparison between the conditional criteria (given random effects) versus the marginal criteria (averaged over random effects). In spite of theoretical arguments, there is not much enthusiasm among applied statisticians to make use of the marginal criteria. We show in an extensive simulation study that the three marginal criteria are superior in choosing the appropriate longitudinal model. In addition, the marginal criteria selected most appropriate model for growth curves of Nigerian chicken. A self-written R function can be combined with standard Bayesian software packages to obtain the marginal selection criteria.
线性混合模型(LMMs)常用于分析具有高斯响应的重复测量数据。对于纵向研究,LMMs由一个固定部分和一个随机部分组成,固定部分表示协变量对时间平均演变的影响,随机部分表示个体曲线围绕平均曲线的变化。选择合适的固定效应和随机效应部分是一项重要的建模工作。在贝叶斯框架下,对于合适的选择标准几乎没有一致的意见。本文比较了偏差信息准则(DIC)、伪贝叶斯因子和广泛适用信息准则(WAIC)在LMMs中的性能,并将其扩展到具有偏态正态分布的LMMs。我们重点比较了条件准则(给定随机效应)与边际准则(对随机效应求平均)。尽管有理论依据,但应用统计学家对使用边际准则的热情并不高。我们在一项广泛的模拟研究中表明,这三个边际准则在选择合适的纵向模型方面更具优势。此外,边际准则为尼日利亚鸡的生长曲线选择了最合适的模型。一个自编的R函数可以与标准的贝叶斯软件包结合使用,以获得边际选择标准。