National Bioenergy Center, National Renewable Energy Laboratory, Golden, CO, 80401, USA.
Bioscience Division, MS M888, Los Alamos National Laboratory, Los Alamos, NM, 87545, USA.
Metab Eng. 2020 May;59:64-75. doi: 10.1016/j.ymben.2020.01.001. Epub 2020 Jan 10.
Pseudomonas putida KT2440 has received increasing attention as an important biocatalyst for the conversion of diverse carbon sources to multiple products, including the olefinic diacid, cis,cis-muconic acid (muconate). P. putida has been previously engineered to produce muconate from glucose; however, periplasmic oxidation of glucose causes substantial 2-ketogluconate accumulation, reducing product yield and selectivity. Deletion of the glucose dehydrogenase gene (gcd) prevents 2-ketogluconate accumulation, but dramatically slows growth and muconate production. In this work, we employed adaptive laboratory evolution to improve muconate production in strains incapable of producing 2-ketogluconate. Growth-based selection improved growth, but reduced muconate titer. A new muconate-responsive biosensor was therefore developed to enable muconate-based screening using fluorescence activated cell sorting. Sorted clones demonstrated both improved growth and muconate production. Mutations identified by whole genome resequencing of these isolates indicated that glucose metabolism may be dysregulated in strains lacking gcd. Using this information, we used targeted engineering to recapitulate improvements achieved by evolution. Deletion of the transcriptional repressor gene hexR improved strain growth and increased the muconate production rate, and the impact of this deletion was investigated using transcriptomics. The genes gntZ and gacS were also disrupted in several evolved clones, and deletion of these genes further improved strain growth and muconate production. Together, these targets provide a suite of modifications that improve glucose conversion to muconate by P. putida in the context of gcd deletion. Prior to this work, our engineered strain lacking gcd generated 7.0 g/L muconate at a productivity of 0.07 g/L/h and a 38% yield (mol/mol) in a fed-batch bioreactor. Here, the resulting strain with the deletion of hexR, gntZ, and gacS achieved 22.0 g/L at 0.21 g/L/h and a 35.6% yield (mol/mol) from glucose in similar conditions. These strategies enabled enhanced muconic acid production and may also improve production of other target molecules from glucose in P. putida.
恶臭假单胞菌 KT2440 作为一种将多种碳源转化为多种产物的重要生物催化剂,包括烯烃二酸顺式,顺式-粘康酸(粘康酸盐),受到了越来越多的关注。恶臭假单胞菌已被工程改造为从葡萄糖生产粘康酸盐;然而,葡萄糖的周质氧化会导致大量 2-酮葡萄糖酸的积累,从而降低产物的产率和选择性。删除葡萄糖脱氢酶基因(gcd)可防止 2-酮葡萄糖酸的积累,但会显著减缓生长和粘康酸的生产。在这项工作中,我们采用适应性实验室进化来提高不能产生 2-酮葡萄糖酸的菌株的粘康酸盐产量。基于生长的选择提高了生长,但降低了粘康酸盐的滴度。因此,开发了一种新的粘康酸响应生物传感器,以便使用荧光激活细胞分选进行基于粘康酸的筛选。经分选的克隆显示出生长和粘康酸盐产量的提高。对这些分离株的全基因组重测序鉴定的突变表明,缺乏 gcd 的菌株中葡萄糖代谢可能失调。利用这些信息,我们使用靶向工程来再现进化所取得的改进。删除转录抑制剂基因 hexR 可改善菌株的生长并提高粘康酸盐的生产速率,并用转录组学研究了该缺失的影响。在几个进化克隆中还敲除了 gntZ 和 gacS 基因,进一步提高了菌株的生长和粘康酸盐的产生。这些靶标共同提供了一套改进措施,可在 gcd 缺失的情况下提高恶臭假单胞菌将葡萄糖转化为粘康酸盐的效率。在此之前,我们缺乏 gcd 的工程菌株在补料分批生物反应器中以 0.07 g/L/h 的生产率和 38%的产率(摩尔/摩尔)产生 7.0 g/L 的粘康酸盐。在此,在类似条件下,缺失 hexR、gntZ 和 gacS 的菌株实现了 22.0 g/L 的产量,生产速率为 0.21 g/L/h,产率(摩尔/摩尔)为 35.6%。这些策略提高了粘康酸的产量,也可能提高恶臭假单胞菌从葡萄糖生产其他目标分子的产量。