Discipline of Chemistry , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India.
Centre of Biosciences and Biomedical Engineering , Indian Institute of Technology Indore , Simrol, Khandwa Road , Indore 453552 , India.
ACS Appl Mater Interfaces. 2020 Feb 5;12(5):5389-5402. doi: 10.1021/acsami.9b15629. Epub 2020 Jan 27.
The increase in the use of bactericides is a matter of grave concern and a serious threat to human health. The present situation demands rapid and efficient detection and elimination of antibiotic-resistant microbes. Herein, we report the synthesis of a simple -symmetric molecular system (TGP) with an intrinsic positive charge through a single-step Schiff base condensation. In a water-dimethyl sulfoxide (DMSO) solvent mixture (80:20 v/v), TGP molecules self-aggregate to form spherical nanoparticles with a positively charged surface that displays efficient fluorescence owing to the aggregation-induced emission (AIE) phenomenon. Both Gram-positive and Gram-negative bacteria could be effectively detected through "turn-off" fluorescence spectroscopy as the electrostatic interaction of the resultant nanoaggregates with the negatively charged bacterial surface induced quenching of fluorescence of the nanoparticles. The fluorescence analysis and steady-state lifetime studies of TGP nanoparticles suggest that a nonradiative decay through photoinduced electron transfer from the nanoparticles to the bacterial surface leads to effective fluorescence quenching. Further, the TGP nanoaggregates demonstrate potent antimicrobial activity against microbes such as multidrug-resistant bacteria and fungi at a concentration as low as 74 μg/mL. A combination of factors including ionic surface characteristics of the nanoparticles for strong electrostatic binding on the bacterial surface followed by possible photoinduced electron transfer from the nanoaggregates to the bacterial membrane and enhanced oxidative stress in the membrane resulting from reactive oxygen species (ROS) generation is found accountable for the high antimicrobial activity of the TGP nanoparticles. The effective disruption of membrane integrity in both Gram-positive and Gram-negative bacteria upon interaction with the nanoaggregates can be observed from field emission scanning electron microscopy (FESEM) studies. The development of simple pathways for the molecular design of multifunctional broad-spectrum antimicrobial systems for rapid and real-time detection, wash-free imaging, and eradication of drug-resistant microbes might be crucial to combat pathogenic agents.
杀菌剂的使用增加令人严重关切,严重威胁人类健康。目前需要快速有效地检测和消除抗生素耐药微生物。在此,我们报告了一种简单对称的分子系统(TGP)的合成,它通过单一步骤席夫碱缩合具有固有正电荷。在水-二甲基亚砜(DMSO)溶剂混合物(80:20v/v)中,TGP 分子自组装形成带正电表面的球形纳米颗粒,由于聚集诱导发射(AIE)现象,显示出高效荧光。通过“关闭”荧光光谱法可以有效地检测革兰氏阳性和革兰氏阴性细菌,因为所得纳米聚集体与带负电荷的细菌表面的静电相互作用诱导纳米颗粒的荧光猝灭。TGP 纳米颗粒的荧光分析和稳态寿命研究表明,通过从纳米颗粒到细菌表面的光致电子转移的非辐射衰减导致有效荧光猝灭。此外,TGP 纳米聚集体在低至 74μg/mL 的浓度下对微生物如多药耐药细菌和真菌表现出强大的抗菌活性。包括纳米颗粒的离子表面特性的组合,用于在细菌表面上进行强静电结合,随后可能从纳米聚集体到细菌膜的光致电子转移,以及由于活性氧(ROS)生成导致膜中氧化应激增强,被发现是 TGP 纳米颗粒高抗菌活性的原因。从场发射扫描电子显微镜(FESEM)研究中可以观察到与纳米聚集体相互作用时革兰氏阳性和革兰氏阴性细菌膜完整性的有效破坏。对于快速实时检测、无冲洗成像以及消除耐药微生物的多功能广谱抗菌系统的分子设计的简单途径的发展,对于对抗病原体可能至关重要。