Institute of Science and Technology Austria, Am Campus 1, Klosterneuburg, 3400, Austria.
California Institute of Technology, 1200 E California Blvd, Pasadena, CA, 91125, USA.
Nat Commun. 2020 Jan 13;11(1):237. doi: 10.1038/s41467-019-14015-2.
Advances in shape-morphing materials, such as hydrogels, shape-memory polymers and light-responsive polymers have enabled prescribing self-directed deformations of initially flat geometries. However, most proposed solutions evolve towards a target geometry without considering time-dependent actuation paths. To achieve more complex geometries and avoid self-collisions, it is critical to encode a spatial and temporal shape evolution within the initially flat shell. Recent realizations of time-dependent morphing are limited to the actuation of few, discrete hinges and cannot form doubly curved surfaces. Here, we demonstrate a method for encoding temporal shape evolution in architected shells that assume complex shapes and doubly curved geometries. The shells are non-periodic tessellations of pre-stressed contractile unit cells that soften in water at rates prescribed locally by mesostructure geometry. The ensuing midplane contraction is coupled to the formation of encoded curvatures. We propose an inverse design tool based on a data-driven model for unit cells' temporal responses.
形状变形材料(如水凝胶、形状记忆聚合物和光响应聚合物)的进展使得可以规定最初平坦几何形状的自导向变形。然而,大多数提出的解决方案都朝着目标几何形状发展,而不考虑时变的致动路径。为了实现更复杂的几何形状并避免自碰撞,在最初平坦的壳内编码空间和时间形状演变至关重要。最近的时变变形实现仅限于少数离散铰链的致动,并且不能形成双曲曲面。在这里,我们展示了一种在假设复杂形状和双曲几何形状的结构壳中编码时间形状演变的方法。壳是非周期性的预加应力收缩单元的细分,在水中以局部由介观结构几何形状规定的速率软化。随之而来的中面收缩与编码曲率的形成相关联。我们提出了一种基于单元时间响应的基于数据驱动模型的逆向设计工具。