Wang Jue, Sotzing Michael, Lee Mina, Chortos Alex
Department of Mechanical Engineering, Purdue University, 500 Central Dr, Lafayette, IN 47907, USA.
Sci Adv. 2023 Jul 21;9(29):eadg8019. doi: 10.1126/sciadv.adg8019.
Reconfigurable morphing surfaces provide new opportunities for advanced human-machine interfaces and bio-inspired robotics. Morphing into arbitrary surfaces on demand requires a device with a sufficiently large number of actuators and an inverse control strategy. Developing compact, efficient control interfaces and algorithms is vital for broader adoption. In this work, we describe a passively addressed robotic morphing surface (PARMS) composed of matrix-arranged ionic actuators. To reduce the complexity of the physical control interface, we introduce passive matrix addressing. Matrix addressing allows the control of independent actuators using only 2 control inputs, which is substantially lower than traditional direct addressing ( control inputs). Using machine learning with finite element simulations for training, our control algorithm enables real-time, high-precision forward and inverse control, allowing PARMS to dynamically morph into arbitrary achievable predefined surfaces on demand. These innovations may enable the future implementation of PARMS in wearables, haptics, and augmented reality/virtual reality.
可重构变形表面为先进的人机界面和仿生机器人技术提供了新机遇。按需变形为任意表面需要一个具有足够数量致动器的设备和一种逆控制策略。开发紧凑、高效的控制接口和算法对于更广泛的应用至关重要。在这项工作中,我们描述了一种由矩阵排列的离子致动器组成的被动寻址机器人变形表面(PARMS)。为了降低物理控制接口的复杂性,我们引入了被动矩阵寻址。矩阵寻址允许仅使用2个控制输入来控制独立的致动器,这大大低于传统的直接寻址(控制输入)。通过使用机器学习和有限元模拟进行训练,我们的控制算法实现了实时、高精度的正向和逆向控制,使PARMS能够按需动态变形为任意可实现的预定义表面。这些创新可能使PARMS未来在可穿戴设备、触觉和增强现实/虚拟现实中得以实现。