受可重构折纸启发的多稳态变形结构。
Reconfigurable origami-inspired multistable metamorphous structures.
作者信息
Wang Chunlong, Guo Hongwei, Liu Rongqiang, Deng Zongquan, Chen Yan, You Zhong
机构信息
School of Mechanical Engineering, Tianjin University, Tianjin 300350, China.
State Key Laboratory of Robotics and System, Harbin Institute of Technology, Harbin 150001, China.
出版信息
Sci Adv. 2024 May 31;10(22):eadk8662. doi: 10.1126/sciadv.adk8662. Epub 2024 May 29.
Origami-inspired metamorphous structures can adjust their shapes and mechanical behaviors according to operational requirements. However, they are typically composed of nonrigid origami, where required facet deformation complicates actuation and makes them highly material dependent. In this study, we present a type of origami metamorphous structure composed of modular bistable units, each of which is a rigid origami. The elasticity within the origami creases and switching of mountain and valley crease lines enable it to have bistability. The resultant metamorphous structure has multistability, allowing it to switch among multifarious configurations with programmable profiles. This concept was validated by potential energy analysis and experiments. Using this concept, we developed a robotic limb capable of both lifting and gripping through configuration changes. Furthermore, we used the origami units to construct a metamaterial whose properties could change with the variation of configurations. These examples demonstrate the concept's remarkable versatility and potential for many applications.
受折纸启发的变形结构可以根据操作要求调整其形状和力学行为。然而,它们通常由非刚性折纸组成,其中所需的面变形使驱动变得复杂,并使其高度依赖材料。在本研究中,我们提出了一种由模块化双稳态单元组成的折纸变形结构,每个单元都是一个刚性折纸。折纸折痕内的弹性以及山峰和山谷折痕线的切换使其具有双稳态。由此产生的变形结构具有多稳定性,使其能够在具有可编程轮廓的多种配置之间切换。这一概念通过势能分析和实验得到了验证。利用这一概念,我们开发了一种能够通过配置变化进行提升和抓握的机器人肢体。此外,我们使用折纸单元构建了一种超材料,其性能可以随着配置的变化而改变。这些例子展示了这一概念卓越的通用性和在许多应用中的潜力。
相似文献
Sci Adv. 2024-5-31
Philos Trans A Math Phys Eng Sci. 2024-10-7
Research (Wash D C). 2020-4-10
J Intell Mater Syst Struct. 2023-12
Phys Rev E. 2016-3-22
引用本文的文献
Nat Commun. 2025-3-27
Chem Rev. 2024-10-23
本文引用的文献
Sci Robot. 2023-9-27
Nat Commun. 2023-7-19
Research (Wash D C). 2023-4-11
Research (Wash D C). 2023-5-4
Nat Commun. 2023-3-23
Sci Adv. 2022-4
Proc Natl Acad Sci U S A. 2022-3-15
Proc Natl Acad Sci U S A. 2021-9-7
Sci Robot. 2021-4-7