Mogas-Soldevila Laia, Zolotovsky Katia
DumoLab Research, Department of Graduate Architecture, Stuart Weitzman School of Design, University of Pennsylvania, Philadelphia, PA, USA.
Department of Art and Design & Chemistry and Chemical Biology, Boston Campus, Northeastern University Boston, Massachusetts, USA.
3D Print Addit Manuf. 2025 Apr 14;12(2):155-168. doi: 10.1089/3dp.2024.0004. eCollection 2025 Apr.
This review explores additive manufacturing (AM) strategies across disciplines for designing with responsive biomaterials and presents a vision of how printed responsive biomaterials (PRBs) can be integrated into everyday objects and buildings to enhance environmental and human health. Advancements in biomaterials science, biological materials manufacturing, synthetic biology, biomedical engineering, bio design, and living architecture are ushering in a new era characterized by multisensory interactions within everyday products and built environments. The material systems developed in recent research demonstrate the ability to interact with their environments through biological, chemical, or physical processes, yielding functionalities desirable in daily-use products. These include self-healing, health diagnostics, pathogen neutralization, adjustable stiffness, strain detection, threat visualization, shapeshifting, toxin trapping, stress correction, waste processing, and energy generation. Here we review examples of AM of biobased environmentally interactive materials using biopolymer composites, electrochemical and resistive devices, active molecules, bio sensors, living cells, spores, or cell-free sites, resulting in genetically active, and physical and chemical interactive systems. We highlight their robustness and evaluate their potential for scaling up into designs and architectures on Earth and beyond.
本综述探讨了跨学科的增材制造(AM)策略,用于设计响应性生物材料,并提出了一种关于如何将打印响应性生物材料(PRB)集成到日常物品和建筑物中以改善环境和人类健康的愿景。生物材料科学、生物材料制造、合成生物学、生物医学工程、生物设计和活体建筑等领域的进步正在开创一个新时代,其特点是日常产品和建筑环境中存在多感官交互。近期研究中开发的材料系统展示了通过生物、化学或物理过程与环境相互作用的能力,产生了日常用品中所需的功能。这些功能包括自我修复、健康诊断、病原体中和、可调刚度、应变检测、威胁可视化、形状变化、毒素捕获、应力校正、废物处理和能量产生。在这里,我们回顾了使用生物聚合物复合材料、电化学和电阻式器件、活性分子、生物传感器、活细胞、孢子或无细胞位点对生物基环境交互材料进行增材制造的例子,从而形成具有遗传活性以及物理和化学交互性的系统。我们强调它们的稳健性,并评估它们扩大规模应用于地球上及地球以外的设计和建筑的潜力。