Center for Nanoparticle Research, Institute for Basic Science (IBS), Seoul, Republic of Korea.
School of Chemical and Biological Engineering, and Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
Nat Mater. 2020 Apr;19(4):436-442. doi: 10.1038/s41563-019-0571-5. Epub 2020 Jan 13.
Despite the growing demand for hydrogen peroxide it is almost exclusively manufactured by the energy-intensive anthraquinone process. Alternatively, HO can be produced electrochemically via the two-electron oxygen reduction reaction, although the performance of the state-of-the-art electrocatalysts is insufficient to meet the demands for industrialization. Interestingly, guided by first-principles calculations, we found that the catalytic properties of the Co-N moiety can be tailored by fine-tuning its surrounding atomic configuration to resemble the structure-dependent catalytic properties of metalloenzymes. Using this principle, we designed and synthesized a single-atom electrocatalyst that comprises an optimized Co-N moiety incorporated in nitrogen-doped graphene for HO production and exhibits a kinetic current density of 2.8 mA cm (at 0.65 V versus the reversible hydrogen electrode) and a mass activity of 155 A g (at 0.65 V versus the reversible hydrogen electrode) with negligible activity loss over 110 hours.
尽管对过氧化氢的需求不断增长,但它几乎完全是通过能源密集型蒽醌工艺生产的。或者,HO 可以通过两电子氧还原反应电化学产生,尽管最先进的电催化剂的性能不足以满足工业化的需求。有趣的是,受第一性原理计算的指导,我们发现 Co-N 部分的催化性质可以通过微调其周围的原子构型来进行调整,以类似于金属酶的结构依赖性催化性质。利用这一原理,我们设计并合成了一种单原子电催化剂,它由包含在氮掺杂石墨烯中的优化的 Co-N 部分组成,用于 HO 的生产,表现出 2.8 mA cm 的动力学电流密度(相对于可逆氢电极为 0.65 V)和 155 A g 的质量活性(相对于可逆氢电极为 0.65 V),在 110 小时内几乎没有活性损失。