Qu Zhan, Su Yali, Sun Li, Liang Feng, Zhang Guohe
School of Microelectronics, Xi'an Jiaotong University, Xi'an 710049, China.
School of Mechanical Engineering, Xi'an Shiyou University, Xi'an 710065, China.
Materials (Basel). 2020 Jan 10;13(2):323. doi: 10.3390/ma13020323.
Using the first-principle calculation that is based on the density functional theory (DFT), our group gains some insights of the structural, electronic and optical properties of two brand new types of BiOI/TiO heterojunctions: 1I-terminated BiOI {001} surface/TiO (1I-BiOI/TiO) and BiO-terminated BiOI {001} surface/TiO (BiO-BiOI/TiO). The calculation illustrates that BiOI/TiO heterojunction has excellent mechanical stability, and it shows that there is a great possibility for the BiOI/TiO heterojunction to be used in visible-light range, hence the photocatalytic ability can be enhanced dramatically. Especially, from the calculation, we discovered that there are two specific properties: the band-gap of 1I-BiOI/TiO heterojunction reduces to 0.28 eV, and the BiO-BiOI/TiO semiconductor material changes to n-type. The calculated band offset (BOs) for 1I-BiOI/TiO heterojunction indicates that the interfacial structure contributes a lot to a suitable band alignment which can disperse the photo-generated carriers into the opposite sides of the interface, so this could effectively weaken the electron-hole recombination. Meanwhile, the built-in potential around the interface accelerates the movement of the photo-generated electron-hole pairs. We believe this is the reason that the BiOI/TiO material shows perfect photocatalytic performance. This paper can provide theoretical support for the related research, especially the further research of the BiOI-based material.
利用基于密度泛函理论(DFT)的第一性原理计算,我们团队对两种新型的BiOI/TiO异质结的结构、电子和光学性质有了一些认识:1I端接的BiOI{001}表面/TiO(1I-BiOI/TiO)和BiO端接的BiOI{001}表面/TiO(BiO-BiOI/TiO)。计算表明,BiOI/TiO异质结具有优异的机械稳定性,并且表明BiOI/TiO异质结在可见光范围内有很大的应用可能性,因此可以显著提高光催化能力。特别是,通过计算我们发现了两个特殊性质:1I-BiOI/TiO异质结的带隙减小到0.28 eV,并且BiO-BiOI/TiO半导体材料变为n型。计算得到的1I-BiOI/TiO异质结的带偏移(BOs)表明,界面结构对合适的能带排列有很大贡献,这种排列可以将光生载流子分散到界面的两侧,因此这可以有效地减弱电子-空穴复合。同时,界面周围的内建电势加速了光生电子-空穴对的移动。我们认为这就是BiOI/TiO材料表现出完美光催化性能的原因。本文可为相关研究,特别是基于BiOI的材料的进一步研究提供理论支持。