Suppr超能文献

从方程学习网络得到分析经典密度泛函。

Analytical classical density functionals from an equation learning network.

机构信息

Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.

Max Planck Institute for Intelligent Systems Tübingen, 72076 Tübingen, Germany.

出版信息

J Chem Phys. 2020 Jan 14;152(2):021102. doi: 10.1063/1.5135919.

Abstract

We explore the feasibility of using machine learning methods to obtain an analytic form of the classical free energy functional for two model fluids, hard rods and Lennard-Jones, in one dimension. The equation learning network proposed by Martius and Lampert [e-print arXiv:1610.02995 (2016)] is suitably modified to construct free energy densities which are functions of a set of weighted densities and which are built from a small number of basis functions with flexible combination rules. This setup considerably enlarges the functional space used in the machine learning optimization as compared to the previous work [S.-C. Lin and M. Oettel, SciPost Phys. 6, 025 (2019)] where the functional is limited to a simple polynomial form. As a result, we find a good approximation for the exact hard rod functional and its direct correlation function. For the Lennard-Jones fluid, we let the network learn (i) the full excess free energy functional and (ii) the excess free energy functional related to interparticle attractions. Both functionals show a good agreement with simulated density profiles for thermodynamic parameters inside and outside the training region.

摘要

我们探索了使用机器学习方法获得两种模型流体(硬棒和 Lennard-Jones)在一维情况下的经典自由能泛函解析形式的可行性。Martius 和 Lampert [e-print arXiv:1610.02995 (2016)] 提出的方程学习网络经过适当修改,构建了自由能密度函数,这些函数是一组加权密度的函数,并且由少数几个具有灵活组合规则的基函数构成。与之前的工作 [S.-C. Lin 和 M. Oettel, SciPost Phys. 6, 025 (2019)] 相比,这种设置大大扩大了机器学习优化中使用的泛函空间,在之前的工作中,泛函仅限于简单的多项式形式。因此,我们找到了对精确硬棒泛函及其直接相关函数的很好的近似。对于 Lennard-Jones 流体,我们让网络学习 (i) 完整的过剩自由能泛函和 (ii) 与粒子间吸引力相关的过剩自由能泛函。对于热力学参数在训练区域内外的密度分布,这两种泛函都与模拟密度分布很好地吻合。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验