Institut für Angewandte Physik, Eberhard Karls Universität Tübingen, 72076 Tübingen, Germany.
Max Planck Institute for Intelligent Systems Tübingen, 72076 Tübingen, Germany.
J Chem Phys. 2020 Jan 14;152(2):021102. doi: 10.1063/1.5135919.
We explore the feasibility of using machine learning methods to obtain an analytic form of the classical free energy functional for two model fluids, hard rods and Lennard-Jones, in one dimension. The equation learning network proposed by Martius and Lampert [e-print arXiv:1610.02995 (2016)] is suitably modified to construct free energy densities which are functions of a set of weighted densities and which are built from a small number of basis functions with flexible combination rules. This setup considerably enlarges the functional space used in the machine learning optimization as compared to the previous work [S.-C. Lin and M. Oettel, SciPost Phys. 6, 025 (2019)] where the functional is limited to a simple polynomial form. As a result, we find a good approximation for the exact hard rod functional and its direct correlation function. For the Lennard-Jones fluid, we let the network learn (i) the full excess free energy functional and (ii) the excess free energy functional related to interparticle attractions. Both functionals show a good agreement with simulated density profiles for thermodynamic parameters inside and outside the training region.
我们探索了使用机器学习方法获得两种模型流体(硬棒和 Lennard-Jones)在一维情况下的经典自由能泛函解析形式的可行性。Martius 和 Lampert [e-print arXiv:1610.02995 (2016)] 提出的方程学习网络经过适当修改,构建了自由能密度函数,这些函数是一组加权密度的函数,并且由少数几个具有灵活组合规则的基函数构成。与之前的工作 [S.-C. Lin 和 M. Oettel, SciPost Phys. 6, 025 (2019)] 相比,这种设置大大扩大了机器学习优化中使用的泛函空间,在之前的工作中,泛函仅限于简单的多项式形式。因此,我们找到了对精确硬棒泛函及其直接相关函数的很好的近似。对于 Lennard-Jones 流体,我们让网络学习 (i) 完整的过剩自由能泛函和 (ii) 与粒子间吸引力相关的过剩自由能泛函。对于热力学参数在训练区域内外的密度分布,这两种泛函都与模拟密度分布很好地吻合。