Suppr超能文献

产甲烷菌中的细胞外电子摄取与多血红素 c 型细胞色素无关。

Extracellular electron uptake in Methanosarcinales is independent of multiheme c-type cytochromes.

机构信息

Nordcee, Department of Biology, University of Southern Denmark, Odense, Denmark.

出版信息

Sci Rep. 2020 Jan 15;10(1):372. doi: 10.1038/s41598-019-57206-z.

Abstract

The co-occurrence of Geobacter and Methanosarcinales is often used as a proxy for the manifestation of direct interspecies electron transfer (DIET) in the environment. Here we tested eleven new co-culture combinations between methanogens and electrogens. Previously, only the most electrogenic Geobacter paired by DIET with Methanosarcinales methanogens, namely G. metallireducens and G. hydrogenophilus. Here we provide additional support, and show that five additional Methanosarcinales paired with G. metallireducens, while a strict hydrogenotroph could not. We also show that G. hydrogenophilus, which is incapable to grow with a strict hydrogenotrophic methanogen, could pair with a strict non-hydrogenotrophic Methanosarcinales. Likewise, an electrogen outside the Geobacter cluster (Rhodoferrax ferrireducens) paired with Methanosarcinales but not with strict hydrogenotrophic methanogens. The ability to interact with electrogens appears to be conserved among Methanosarcinales, the only methanogens with c-type cytochromes, including multihemes (MHC). Nonetheless, MHC, which are often linked to extracellular electron transfer, were neither unique nor universal to Methanosarcinales and only two of seven Methanosarcinales tested had MHC. Of these two, one strain had an MHC-deletion knockout available, which we hereby show is still capable to retrieve extracellular electrons from G. metallireducens or an electrode suggesting an MHC-independent strategy for extracellular electron uptake.

摘要

在环境中,产电菌和产甲烷菌的共现通常被用作直接种间电子传递 (DIET) 表现的替代指标。在这里,我们测试了 11 种新的产甲烷菌和产电菌共培养组合。以前,只有最具电活性的产电菌通过 DIET 与产甲烷菌 Methanosarcinales 配对,即 G. metallireducens 和 G. hydrogenophilus。在这里,我们提供了更多的支持,并表明另外 5 种 Methanosarcinales 与 G. metallireducens 配对,而严格的氢营养型则不能。我们还表明,不能与严格的氢营养型产甲烷菌一起生长的 G. hydrogenophilus 可以与严格的非氢营养型 Methanosarcinales 配对。同样,一种不在 Geobacter 群之外的产电菌(Rhodoferrax ferrireducens)与 Methanosarcinales 配对,但与严格的氢营养型产甲烷菌不配对。与产电菌相互作用的能力似乎在 Methanosarcinales 中是保守的,Methanosarcinales 是唯一具有 c 型细胞色素的产甲烷菌,包括多血红素(MHC)。尽管如此,MHC 通常与细胞外电子转移有关,但并不是 Methanosarcinales 所特有的,在测试的 7 种 Methanosarcinales 中只有两种具有 MHC。在这两种中,有一种 MHC 缺失敲除菌株可用,我们在此表明,它仍然能够从 G. metallireducens 或电极中回收细胞外电子,这表明存在 MHC 独立的细胞外电子摄取策略。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7b6c/6962339/12ea57b1de4a/41598_2019_57206_Fig1_HTML.jpg

相似文献

2
Capable of Direct Interspecies Electron Transfer.
Environ Sci Technol. 2020 Dec 1;54(23):15347-15354. doi: 10.1021/acs.est.0c05525. Epub 2020 Nov 18.
3
Comparative transcriptomic insights into the mechanisms of electron transfer in Geobacter co-cultures with activated carbon and magnetite.
Sci China Life Sci. 2018 Jul;61(7):787-798. doi: 10.1007/s11427-017-9177-1. Epub 2017 Oct 31.
4
Mechanisms for Electron Uptake by Methanosarcina acetivorans during Direct Interspecies Electron Transfer.
mBio. 2021 Oct 26;12(5):e0234421. doi: 10.1128/mBio.02344-21. Epub 2021 Oct 5.
5
Putative Extracellular Electron Transfer in Methanogenic Archaea.
Front Microbiol. 2021 Mar 22;12:611739. doi: 10.3389/fmicb.2021.611739. eCollection 2021.
6
Direct interspecies electron transfer between Geobacter metallireducens and Methanosarcina barkeri.
Appl Environ Microbiol. 2014 Aug;80(15):4599-605. doi: 10.1128/AEM.00895-14.
9
Different outer membrane -type cytochromes are involved in direct interspecies electron transfer to or species.
mLife. 2022 Sep 23;1(3):272-286. doi: 10.1002/mlf2.12037. eCollection 2022 Sep.
10
In Situ Spectroelectrochemical Characterization Reveals Cytochrome-Mediated Electric Syntrophy in Coculture.
Environ Sci Technol. 2021 Jul 20;55(14):10142-10151. doi: 10.1021/acs.est.1c00356. Epub 2021 Jul 1.

引用本文的文献

1
Enhancement of direct interspecies electron transfer and methane production by co-culture of dual species and .
Front Microbiol. 2025 Aug 5;16:1604265. doi: 10.3389/fmicb.2025.1604265. eCollection 2025.
2
Cell surface differences within the genus shape interactions with the extracellular environment.
J Bacteriol. 2025 Aug 21;207(8):e0011225. doi: 10.1128/jb.00112-25. Epub 2025 Jul 25.
3
Analysis of Mechanisms for Electron Uptake by 6Ac During Direct Interspecies Electron Transfer.
Int J Mol Sci. 2025 Apr 28;26(9):4195. doi: 10.3390/ijms26094195.
4
Mechanisms of microbial co-aggregation in mixed anaerobic cultures.
Appl Microbiol Biotechnol. 2024 Jul 4;108(1):407. doi: 10.1007/s00253-024-13246-8.
5
Electrobiocorrosion by microbes without outer-surface cytochromes.
mLife. 2024 Mar 19;3(1):110-118. doi: 10.1002/mlf2.12111. eCollection 2024 Mar.
6
Different outer membrane -type cytochromes are involved in direct interspecies electron transfer to or species.
mLife. 2022 Sep 23;1(3):272-286. doi: 10.1002/mlf2.12037. eCollection 2022 Sep.
9
Microbial electrosynthesis: opportunities for microbial pure cultures.
Trends Biotechnol. 2024 Aug;42(8):1035-1047. doi: 10.1016/j.tibtech.2024.02.004. Epub 2024 Mar 1.
10
Humic acid-dependent respiratory growth of Methanosarcina acetivorans involves pyrroloquinoline quinone.
ISME J. 2023 Nov;17(11):2103-2111. doi: 10.1038/s41396-023-01520-y. Epub 2023 Sep 22.

本文引用的文献

1
Methanogens: pushing the boundaries of biology.
Emerg Top Life Sci. 2018 Dec 14;2(4):629-646. doi: 10.1042/ETLS20180031.
2
A Membrane-Bound Cytochrome Enables To Conserve Energy from Extracellular Electron Transfer.
mBio. 2019 Aug 20;10(4):e00789-19. doi: 10.1128/mBio.00789-19.
3
Performance of different methanogenic species for the microbial electrosynthesis of methane from carbon dioxide.
Bioresour Technol. 2019 Oct;289:121706. doi: 10.1016/j.biortech.2019.121706. Epub 2019 Jun 27.
6
Potential for Methanosarcina to Contribute to Uranium Reduction during Acetate-Promoted Groundwater Bioremediation.
Microb Ecol. 2018 Oct;76(3):660-667. doi: 10.1007/s00248-018-1165-5. Epub 2018 Mar 2.
8
Predicting Secretory Proteins with SignalP.
Methods Mol Biol. 2017;1611:59-73. doi: 10.1007/978-1-4939-7015-5_6.
10
Extracellular electron transfer mechanisms between microorganisms and minerals.
Nat Rev Microbiol. 2016 Oct;14(10):651-62. doi: 10.1038/nrmicro.2016.93. Epub 2016 Aug 30.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验