DECHEMA-Forschungsinstitut, Industrielle Biotechnologie, Frankfurt am Main, Germany.
DECHEMA-Forschungsinstitut, Industrielle Biotechnologie, Frankfurt am Main, Germany.
Bioresour Technol. 2019 Oct;289:121706. doi: 10.1016/j.biortech.2019.121706. Epub 2019 Jun 27.
Microbial electrosynthesis (MES) is a promising technology to convert CO and electricity into the biofuel methane using methanogens. Until now, most investigations on electro-methanogenesis are "proof-of-principle" studies. In this paper, different strains were quantitatively compared in regard to final methane concentration, yields based on CO-conversion, productivities as well as Coulombic efficiencies in order to identify suitable organisms for MES. Methanococcus vannielii, Methanococcus maripaludis, Methanolacinia petrolearia, Methanobacterium congolense, and Methanoculleus submarinus were able to produce methane via MES at -700 mV vs. standard hydrogen electrode (SHE). Beside methane also biological H production was detected during MES, which might be due to the involvement of hydrogenases. A direct electron transfer pathway is most likely. Obviously, M. maripaludis is the most resource efficient methane producer in microbial electrosynthesis regarding the methane productivity (8.81 ± 0.51 mmol m d) and the Coulombic efficiency (58.9 ± 0.8%).
微生物电合成(MES)是一种很有前途的技术,可以利用产甲烷菌将 CO 和电能转化为生物燃料甲烷。到目前为止,大多数关于电甲烷生成的研究都是“原理验证”研究。在本文中,对不同菌株进行了定量比较,比较了最终甲烷浓度、基于 CO 转化的产率、生产力以及库仑效率,以确定适合 MES 的合适生物。Methanococcus vannielii、Methanococcus maripaludis、Methanolacinia petrolearia、Methanobacterium congolense 和 Methanoculleus submarinus 能够在相对于标准氢电极(SHE)的-700 mV 下通过 MES 产生甲烷。除了甲烷之外,在 MES 期间还检测到了生物 H 的产生,这可能是由于氢酶的参与。很可能存在直接的电子转移途径。显然,M. maripaludis 是微生物电合成中甲烷生产效率最高的资源,其甲烷生产力(8.81±0.51 mmol m d)和库仑效率(58.9±0.8%)最高。