Suppr超能文献

一氧化氮:是否能成为一种内分泌激素?

Nitric oxide: To be or not to be an endocrine hormone?

机构信息

Nutrition and Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran.

Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.

出版信息

Acta Physiol (Oxf). 2020 May;229(1):e13443. doi: 10.1111/apha.13443. Epub 2020 Jan 26.

Abstract

Nitric oxide (NO), a highly reactive gasotransmitter, is critical for a number of cellular processes and has multiple biological functions. Due to its limited lifetime and diffusion distance, NO has been mainly believed to act in autocrine/paracrine fashion. The increasingly recognized effects of pharmacologically delivered and endogenous NO at a distant site have changed the conventional wisdom and introduced NO as an endocrine signalling molecule. The notion is greatly supported by the detection of a number of NO adducts and their circulatory cycles, which in turn contribute to the transport and delivery of NO bioactivity, remote from the sites of its synthesis. The existence of endocrine sites of synthesis, negative feedback regulation of biosynthesis, integrated storage and transport systems, having an exclusive receptor, that is, soluble guanylyl cyclase (sGC), and organized circadian rhythmicity make NO something beyond a simple autocrine/paracrine signalling molecule that could qualify for being an endocrine signalling molecule. Here, we discuss hormonal features of NO from the classical endocrine point of view and review available knowledge supporting NO as a true endocrine hormone. This new insight can provide a new framework within which to reinterpret NO biology and its clinical applications.

摘要

一氧化氮(NO)是一种具有高反应性的气体递质,对许多细胞过程至关重要,具有多种生物学功能。由于其有限的寿命和扩散距离,NO 主要被认为以自分泌/旁分泌方式发挥作用。越来越多的药理学方法和内源性 NO 在远处发挥作用的证据改变了传统观念,将 NO 引入为一种内分泌信号分子。这一观点得到了大量检测到的一氧化氮加合物及其循环的支持,这些加合物反过来又有助于一氧化氮生物活性的运输和传递,远离其合成部位。内分泌合成部位的存在、生物合成的负反馈调节、整合的储存和运输系统、具有独特受体(即可溶性鸟苷酸环化酶(sGC))以及有组织的昼夜节律性,使 NO 不仅仅是一种简单的自分泌/旁分泌信号分子,有资格成为一种内分泌信号分子。在这里,我们从经典的内分泌学角度讨论了 NO 的激素特征,并回顾了支持 NO 作为真正的内分泌激素的现有知识。这一新的认识可以为重新解释 NO 生物学及其临床应用提供一个新的框架。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验