IEEE/ACM Trans Comput Biol Bioinform. 2021 Sep-Oct;18(5):1970-1985. doi: 10.1109/TCBB.2020.2966703. Epub 2021 Oct 7.
Advanced computational techniques of the current era help to identify proteins from the complex biological network that interact with each other and with the cell's environment. Biological pathways are a chain of molecular actions that leads to a new molecular product creation or alters the cellular state. These pathways are helpful in the predication of many real-world issues. Rebuilding these pathways is a challenging task due to the fact that protein interactions are undirected, whereas pathways are directed. To discover these pathways in protein-protein interaction data from specified source and target, it is essential to orient protein interactions. Unfortunately, the edge orientation problem is NP-hard, which makes it challenging to develop effective algorithms. This work rebuilds biologically important pathways in a weighted network of protein interactions of yeast species. The proposed algorithm, pseudo-guided multi-objective genetic algorithm (PGMOGA) rebuilds pathways by assigning orientation to the edges of the weighted network. Extending the past research, mathematical modeling of single-objective and multi-objective functions is performed. The PGMOGA is compared with four state-of-the-art approaches, namely, random orientation plus local search (ROLS), single-objective genetic algorithm (SOGA), multi-objective genetic algorithm (MOGA), and multi random search (MRS). The comparison is based on three general and four path specific metrics. Results show that the current proposal performs better.
当前时代的高级计算技术有助于识别相互作用的复杂生物网络中的蛋白质,以及与细胞环境相互作用的蛋白质。生物途径是一系列分子作用的链,导致新的分子产物的产生或改变细胞状态。这些途径有助于预测许多现实世界中的问题。由于蛋白质相互作用是无向的,而途径是有向的,因此重建这些途径是一项具有挑战性的任务。为了从指定的源和目标的蛋白质-蛋白质相互作用数据中发现这些途径,必须对蛋白质相互作用进行定向。不幸的是,边定向问题是 NP 难的,这使得开发有效的算法具有挑战性。这项工作在酵母物种的蛋白质相互作用加权网络中重建了具有生物学意义的途径。所提出的算法,伪引导多目标遗传算法(PGMOGA)通过对加权网络的边进行定向来重建途径。扩展了过去的研究,对单目标和多目标函数进行了数学建模。将 PGMOGA 与四种最先进的方法进行了比较,即随机定向加局部搜索(ROLS)、单目标遗传算法(SOGA)、多目标遗传算法(MOGA)和多随机搜索(MRS)。比较基于三个通用和四个路径特定的指标。结果表明,目前的提议表现更好。