Département des Sciences Biologiques, Université du Québec à Montréal, 141 Avenue du Président-Kennedy, Montréal, Québec, H2X 1Y4, Canada.
Institut de Recherche sur la Biologie de l'Insecte (IRBI), UMR 7261, CNRS, Université de Tours, Tours, France.
Ecology. 2020 Apr;101(4):e02973. doi: 10.1002/ecy.2973. Epub 2020 Feb 7.
The recent development of human societies has led to major, rapid, and often inexorable changes in the environment of most animal species. Over the last decades, a growing number of studies formulated predictions on the modalities of animal adaptation to novel or changing environments, questioning how and at what speed animals should adapt to such changes, discussing the levels of risks imposed by changes in the mean and/or variance of temperatures on animal performance, and exploring the underlying roles of phenotypic plasticity and genetic inheritance. These fundamental predictions, however, remain poorly tested using field data. Here, we tested these predictions using a unique continental-scale data set in the European earwig Forficula auricularia L., a univoltine insect introduced in North America one century ago. We conducted a common garden experiment, in which we measured 13 life-history traits in 4,158 field-sampled earwigs originating from 19 populations across North America. Our results first demonstrate that 10 of the 13 measured life-history traits are associated with two sets of variations in seasonal temperatures, that is, winter-summer and autumn-spring. We found, however, no association with the overall mean monthly temperatures of the invaded locations. Furthermore, our use of a common garden setup reveals that the observed patterns of variation in earwigs' life-history traits are not mere plastic responses to their current environment, but are either due to their genetic background and/or to the environmental conditions they experienced during early life development. Overall, these findings provide continent-scale support to the claims that adaptation to thermal changes can occur quickly (in less than 100 generations), even in insects with long life cycles, and emphasize the importance of variation in seasonal temperature over mean population temperatures in climate adaptation.
人类社会的近期发展导致大多数动物物种的环境发生了重大、快速且往往不可逆转的变化。在过去几十年中,越来越多的研究对动物适应新环境或变化环境的方式和速度提出了预测,质疑动物应该如何以及以多快的速度适应这些变化,讨论了温度均值和/或方差变化对动物表现施加的风险水平,并探讨了表型可塑性和遗传继承的潜在作用。然而,这些基本预测仍然很少通过实地数据进行检验。在这里,我们使用欧洲耳夹子 Forficula auricularia L. 的独特大陆范围数据集检验了这些预测,这是一种一世纪前引入北美的单龄昆虫。我们进行了一个共同花园实验,在其中我们测量了 13 个生活史特征,这些特征来自北美 19 个种群的 4158 个实地采集的耳夹。我们的研究结果首先表明,在所测量的 13 个生活史特征中有 10 个与季节性温度的两组变化相关联,即冬季-夏季和秋季-春季。然而,我们没有发现与入侵地点的月平均温度的关联。此外,我们使用共同花园设置表明,观察到的耳夹生活史特征的变异模式不是对其当前环境的单纯可塑性反应,而是要么归因于它们的遗传背景和/或它们在早期生活发育过程中经历的环境条件。总体而言,这些发现为适应气候变化的快速发生(在不到 100 代的时间内)的说法提供了大陆范围的支持,即使是在生命周期较长的昆虫中,并且强调了季节性温度变化而非种群温度均值在气候适应中的重要性。