Suppr超能文献

基于主成分分析的高密度肌电图通道选择以改善力估计

PCA-Based Channel Selection in High-Density EMG for Improving Force Estimation.

作者信息

Hajian Gelareh, Morin Evelyn, Etemad Ali

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:652-655. doi: 10.1109/EMBC.2019.8857118.

Abstract

In this paper, a method for selecting channels to improve estimated force using fast orthogonal search (FOS) has been proposed. Surface electromyogram (sEMG) signals acquired from linear surface electrode arrays, placed on the long head and short head of biceps brachii, and brachioradialis during isometric contractions are used to estimate force induced at the wrist using the FOS algorithm. The method utilizes principle component analysis (PCA) in the frequency domain to select the channels with the highest contribution to the first principal component (PC). Our analysis demonstrates that our proposed method is capable of reducing the dimensionality of the data (the number of channels was reduced from 21 to 9) while improving the accuracy of the estimated force.

摘要

本文提出了一种使用快速正交搜索(FOS)来选择通道以提高估计力的方法。从放置在肱二头肌长头、短头以及肱桡肌上的线性表面电极阵列采集的表面肌电图(sEMG)信号,在等长收缩期间用于使用FOS算法估计手腕处产生的力。该方法在频域中利用主成分分析(PCA)来选择对第一主成分(PC)贡献最大的通道。我们的分析表明,我们提出的方法能够降低数据的维度(通道数量从21个减少到9个),同时提高估计力的准确性。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验