Suppr超能文献

基于肌电图的力估计的降维技术研究。

An Investigation of Dimensionality Reduction Techniques for EMG-based Force Estimation.

作者信息

Hajian Gelareh, Etemad Ali, Morin Evelyn

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:698-701. doi: 10.1109/EMBC.2019.8856293.

Abstract

In this paper, extracted features in time and frequency domain, from high-density surface electromyogram (HD-sEMG) signals acquired from the long head and short head of biceps brachii, and brachioradialis during isometric elbow flexion are used to estimate force induced at the wrist using an artificial neural network (ANN). Different hidden layer sizes were considered to investigate its effect on the model accuracy. Also, we applied two dimensionality reduction techniques, principal component analysis (PCA) and t-distributed stochastic neighbor embedding (t-SNE), on the feature set and investigated their effects on force estimation accuracy.

摘要

在本文中,从肱二头肌长头和短头以及肱桡肌在等长屈肘过程中采集的高密度表面肌电图(HD-sEMG)信号中提取时域和频域特征,并用人工神经网络(ANN)来估计手腕处产生的力。考虑了不同的隐藏层大小以研究其对模型精度的影响。此外,我们对特征集应用了两种降维技术,即主成分分析(PCA)和t分布随机邻域嵌入(t-SNE),并研究了它们对力估计精度的影响。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验