Iwamoto Yutaro, Xiong Kun, Kitamura Takahiro, Han Xian-Hua, Matsushiro Naoki, Nishimura Hiroshi, Chen Yen-Wei
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:2789-2792. doi: 10.1109/EMBC.2019.8856703.
In this paper, we present an automatic approach to paranasal sinus segmentation in computed tomography (CT) images. The proposed method combines a probabilistic atlas and a fully convolutional network (FCN). The probabilistic atlas was used to automatically localize the paranasal sinus and determine its bounding box. The FCN was then used to automatically segment the paranasal sinus in the bounding box. Comparing our proposed method with the conventional FCN (without probabilistic atlas) and the state-of-the-art method using active contour with group similarity, the proposed method demonstrated an improvement in the paranasal sinus segmentation. The segmentation accuracy (Dice coefficient) was about 0.83 even for the case with unclear boundary.
在本文中,我们提出了一种用于计算机断层扫描(CT)图像中鼻窦分割的自动方法。所提出的方法结合了概率图谱和全卷积网络(FCN)。概率图谱用于自动定位鼻窦并确定其边界框。然后使用FCN在边界框内自动分割鼻窦。将我们提出的方法与传统的FCN(无概率图谱)以及使用具有组相似性的活动轮廓的最新方法进行比较,结果表明所提出的方法在鼻窦分割方面有改进。即使对于边界不清晰的情况,分割精度(骰子系数)约为0.83。