Suppr超能文献

基于深度学习的锥形束 CT 图像上颌窦全自动分割。

Deep learning-based fully automatic segmentation of the maxillary sinus on cone-beam computed tomographic images.

机构信息

Department of Oral and Maxillofacial Radiology, Yonsei University College of Dentistry, 50-1 Yonsei-ro Seodaemun-gu, Seoul, 03722, Korea.

出版信息

Sci Rep. 2022 Aug 17;12(1):14009. doi: 10.1038/s41598-022-18436-w.

Abstract

The detection of maxillary sinus wall is important in dental fields such as implant surgery, tooth extraction, and odontogenic disease diagnosis. The accurate segmentation of the maxillary sinus is required as a cornerstone for diagnosis and treatment planning. This study proposes a deep learning-based method for fully automatic segmentation of the maxillary sinus, including clear or hazy states, on cone-beam computed tomographic (CBCT) images. A model for segmentation of the maxillary sinuses was developed using U-Net, a convolutional neural network, and a total of 19,350 CBCT images were used from 90 maxillary sinuses (34 clear sinuses, 56 hazy sinuses). Post-processing to eliminate prediction errors of the U-Net segmentation results increased the accuracy. The average prediction results of U-Net were a dice similarity coefficient (DSC) of 0.9090 ± 0.1921 and a Hausdorff distance (HD) of 2.7013 ± 4.6154. After post-processing, the average results improved to a DSC of 0.9099 ± 0.1914 and an HD of 2.1470 ± 2.2790. The proposed deep learning model with post-processing showed good performance for clear and hazy maxillary sinus segmentation. This model has the potential to help dental clinicians with maxillary sinus segmentation, yielding equivalent accuracy in a variety of cases.

摘要

上颌窦壁的检测在牙科领域(如种植牙手术、拔牙和牙源性疾病诊断)非常重要。准确分割上颌窦是诊断和治疗计划的基础。本研究提出了一种基于深度学习的方法,用于在锥形束计算机断层扫描(CBCT)图像上自动分割上颌窦,包括清晰或模糊状态。使用 U-Net(一种卷积神经网络)开发了用于分割上颌窦的模型,共使用了 90 个上颌窦(34 个清晰窦,56 个模糊窦)的 19350 个 CBCT 图像。后处理消除了 U-Net 分割结果的预测错误,提高了准确性。U-Net 的平均预测结果为骰子相似系数(DSC)为 0.9090±0.1921,Hausdorff 距离(HD)为 2.7013±4.6154。后处理后,平均结果提高到 DSC 为 0.9099±0.1914,HD 为 2.1470±2.2790。经过后处理的提出的深度学习模型在清晰和模糊上颌窦分割方面表现出良好的性能。该模型有可能帮助牙科临床医生进行上颌窦分割,在各种情况下都能达到相当的准确性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验