Gudapati Varun, Chen Alexander, Meyer Scott, Jay Kuo Chung-Chieh, Ding Yichen, Hsiai Tzung K, Wang Marilene
David Geffen School of Medicine, UCLA, Los Angeles, California, United States.
Ming-Hsieh Department of Electrical Engineering, USC, Los Angeles, California, United States.
J Neurol Surg Rep. 2024 Aug 5;85(3):e118-e123. doi: 10.1055/a-2358-8928. eCollection 2024 Jul.
Virtual reality (VR) is an increasingly valuable teaching tool, but current simulators are not typically clinically scalable due to their reliance on inefficient manual segmentation. The objective of this project was to leverage a high-throughput and accurate machine learning method to automate data preparation for a patient-specific VR simulator used to explore preoperative sinus anatomy. An endoscopic VR simulator was designed in to enable interactive exploration of sinus anatomy. The Saak transform, a data-efficient machine learning method, was adapted to accurately segment sinus computed tomography (CT) scans using minimal training data, and the resulting data were reconstructed into three-dimensional (3D) patient-specific models that could be explored in the simulator. Using minimal training data, the Saak transform-based machine learning method offers accurate soft-tissue segmentation. When explored with an endoscope in the VR simulator, the anatomical models generated by the algorithm accurately capture key sinus structures and showcase patient-specific variability in anatomy. By offering an automatic means of preparing VR models from a patient's raw CT scans, this pipeline takes a key step toward clinical scalability. In addition to preoperative planning, this system also enables virtual endoscopy-a tool that is particularly useful in the COVID-19 era. As VR technology inevitably continues to develop, such a foundation will help ensure that future innovations remain clinically accessible.
虚拟现实(VR)是一种越来越有价值的教学工具,但由于当前的模拟器依赖低效的手动分割,通常在临床上无法扩展。本项目的目标是利用一种高通量且准确的机器学习方法,为用于探索术前鼻窦解剖结构的患者特异性VR模拟器自动进行数据准备。
设计了一种内窥镜VR模拟器,以实现对鼻窦解剖结构的交互式探索。Saak变换是一种数据高效的机器学习方法,通过使用最少的训练数据来准确分割鼻窦计算机断层扫描(CT),并将所得数据重建为可在模拟器中探索的三维(3D)患者特异性模型。
基于最少的训练数据,基于Saak变换的机器学习方法可提供准确的软组织分割。当在VR模拟器中使用内窥镜进行探索时,该算法生成的解剖模型能够准确捕捉关键的鼻窦结构,并展示患者特异性的解剖变异。
通过提供一种从患者原始CT扫描自动制备VR模型的方法,该流程朝着临床可扩展性迈出了关键一步。除了术前规划外,该系统还支持虚拟内窥镜检查——这是一种在COVID-19时代特别有用的工具。随着VR技术不可避免地持续发展,这样的基础将有助于确保未来的创新在临床上仍然可用。