Gurve Dharmendra, Delisle-Rodriguez Denis, Bastos Teodiano, Krishnan Sridhar
Annu Int Conf IEEE Eng Med Biol Soc. 2019 Jul;2019:3083-3086. doi: 10.1109/EMBC.2019.8856677.
In this paper, we aim at finding the smallest set of EEG channels that can ensure highly accurate classification of motor imagery (MI) dataset and maintain the optimum Kappa score. Non-negative matrix factorization (NMF) is used for important and discriminant EEG channel selection. Further, the theory of Riemannian geometry in the manifold of covariance matrices is used for feature extraction. At last, the neighborhood component feature selection (NCFS) algorithm is used to select the small subset of important features from the given set of features. The significance of the proposed work is two-fold: 1) it greatly reduces the time complexity and the amount of overfitting by reducing the unnecessary EEG channels and redundant features. 2) it increases the classification accuracy of the model by selecting only subject-specific EEG channels. The proposed algorithm is tested on BCI Competition IV,2a dataset to validate the performance. The proposed approach has achieved 77.91% average classification accuracy and 0.626 mean Kappa score.
在本文中,我们旨在找到最小的脑电图(EEG)通道集,该通道集能够确保对运动想象(MI)数据集进行高度准确的分类,并维持最佳的卡帕(Kappa)分数。非负矩阵分解(NMF)用于重要且具有判别力的EEG通道选择。此外,协方差矩阵流形中的黎曼几何理论用于特征提取。最后,邻域成分特征选择(NCFS)算法用于从给定的特征集中选择重要特征的小子集。所提工作的意义有两方面:1)通过减少不必要的EEG通道和冗余特征,极大地降低了时间复杂度和过拟合量。2)通过仅选择特定于个体的EEG通道,提高了模型的分类准确率。所提算法在脑机接口(BCI)竞赛IV的2a数据集上进行测试以验证其性能。所提方法取得了77.91%的平均分类准确率和0.626的平均卡帕分数。