China Academy of Information and Communications Technology, Beijing, China.
Math Biosci Eng. 2023 May 24;20(7):12454-12471. doi: 10.3934/mbe.2023554.
Motor imagery (MI) is a traditional paradigm of brain-computer interface (BCI) and can assist users in creating direct connections between their brains and external equipment. The common spatial patterns algorithm is the most popular spatial filtering technique for collecting EEG signal features in MI-based BCI systems. Due to the defect that it only considers the spatial information of EEG signals and is susceptible to noise interference and other issues, its performance is diminished. In this study, we developed a Riemannian transform feature extraction method based on filter bank fusion with a combination of multiple time windows. First, we proposed the multi-time window data segmentation and recombination method by combining it with a filter group to create new data samples. This approach could capture individual differences due to the variation in time-frequency patterns across different participants, thereby improving the model's generalization performance. Second, Riemannian geometry was used for feature extraction from non-Euclidean structured EEG data. Then, considering the non-Gaussian distribution of EEG signals, the neighborhood component analysis (NCA) algorithm was chosen for feature selection. Finally, to meet real-time requirements and a low complexity, we employed a Support Vector Machine (SVM) as the classification algorithm. The proposed model achieved improved accuracy and robustness. In this study, we proposed an algorithm with superior performance on the BCI Competition IV dataset 2a, achieving an accuracy of 89%, a kappa value of 0.73 and an AUC of 0.9, demonstrating advanced capabilities. Furthermore, we analyzed data collected in our laboratory, and the proposed method achieved an accuracy of 77.4%, surpassing other comparative models. This method not only significantly improved the classification accuracy of motor imagery EEG signals but also bore significant implications for applications in the fields of brain-computer interfaces and neural engineering.
运动想象(MI)是脑机接口(BCI)的传统范式,可以帮助用户在大脑和外部设备之间建立直接连接。常见空间模式算法是基于 MI 的 BCI 系统中用于收集 EEG 信号特征的最流行的空间滤波技术。由于它仅考虑 EEG 信号的空间信息,容易受到噪声干扰等问题的影响,因此其性能降低。在这项研究中,我们开发了一种基于滤波器组融合的黎曼变换特征提取方法,结合了多个时间窗口。首先,我们提出了一种多时间窗口数据分段和重组方法,通过与滤波器组结合来创建新的数据样本。这种方法可以捕获由于不同参与者的时频模式变化而导致的个体差异,从而提高模型的泛化性能。其次,使用黎曼几何从非欧几里得结构 EEG 数据中进行特征提取。然后,考虑到 EEG 信号的非高斯分布,选择邻域成分分析(NCA)算法进行特征选择。最后,为了满足实时性要求和低复杂性,我们采用支持向量机(SVM)作为分类算法。所提出的模型在 BCI 竞赛 IV 数据集 2a 上实现了更高的准确性和鲁棒性。在这项研究中,我们提出的算法在 BCI 竞赛 IV 数据集 2a 上表现出色,准确率为 89%,kappa 值为 0.73,AUC 为 0.9,表现出先进的能力。此外,我们分析了实验室收集的数据,所提出的方法的准确率达到了 77.4%,超过了其他比较模型。该方法不仅显著提高了运动想象 EEG 信号的分类准确性,而且对脑机接口和神经工程领域的应用具有重要意义。