Suppr超能文献

利用深度学习在资源有限的国家中进行自由手超声扫描的自动胎儿头部检测和周长估计。

Automated Fetal Head Detection and Circumference Estimation from Free-Hand Ultrasound Sweeps Using Deep Learning in Resource-Limited Countries.

机构信息

Diagnostic Image Analysis Group, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands; Medical Ultrasound Imaging Center, Department of Radiology and Nuclear Medicine, Radboud University Medical Center, Nijmegen, The Netherlands.

St. Luke's Catholic Hospital and College of Nursing and Midwifery, Wolisso, Ethiopia.

出版信息

Ultrasound Med Biol. 2019 Mar;45(3):773-785. doi: 10.1016/j.ultrasmedbio.2018.09.015. Epub 2018 Dec 17.

Abstract

Ultrasound imaging remains out of reach for most pregnant women in developing countries because it requires a trained sonographer to acquire and interpret the images. We address this problem by presenting a system that can automatically estimate the fetal head circumference (HC) from data obtained with use of the obstetric sweep protocol (OSP). The OSP consists of multiple pre-defined sweeps with the ultrasound transducer over the abdomen of the pregnant woman. The OSP can be taught within a day to any health care worker without prior knowledge of ultrasound. An experienced sonographer acquired both the standard plane-to obtain the reference HC-and the OSP from 183 pregnant women in St. Luke's Hospital, Wolisso, Ethiopia. The OSP data, which will most likely not contain the standard plane, was used to automatically estimate HC using two fully convolutional neural networks. First, a VGG-Net-inspired network was trained to automatically detect the frames that contained the fetal head. Second, a U-net-inspired network was trained to automatically measure the HC for all frames in which the first network detected a fetal head. The HC was estimated from these frame measurements, and the curve of Hadlock was used to determine gestational age (GA). The results indicated that most automatically estimated GAs fell within the P2.5-P97.5 interval of the Hadlock curve compared with the GAs obtained from the reference HC, so it is possible to automatically estimate GA from OSP data. Our method therefore has potential application for providing maternal care in resource-constrained countries.

摘要

超声成像是发展中国家大多数孕妇无法企及的,因为它需要经过培训的超声技师来获取和解释图像。我们通过提出一种系统来解决这个问题,该系统可以根据使用产科扫查协议 (OSP) 获得的数据自动估计胎儿头围 (HC)。OSP 由在孕妇腹部进行的多个预先定义的扫查组成。OSP 可以在一天内教授给任何没有超声知识的医疗保健工作者。一位经验丰富的超声技师从埃塞俄比亚沃利索的圣卢克医院的 183 名孕妇那里获得了标准平面(用于获得参考 HC)和 OSP。OSP 数据很可能不包含标准平面,因此使用两个全卷积神经网络自动估计 HC。首先,训练一个受 VGG-Net 启发的网络来自动检测包含胎儿头部的帧。其次,训练一个受 U-net 启发的网络来自动测量第一个网络检测到胎儿头部的所有帧的 HC。根据这些帧的测量值估计 HC,并使用 Hadlock 曲线确定胎龄 (GA)。结果表明,与参考 HC 获得的 GA 相比,大多数自动估计的 GA 落在 Hadlock 曲线的 P2.5-P97.5 区间内,因此可以从 OSP 数据自动估计 GA。因此,我们的方法有可能在资源有限的国家提供产妇护理。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验